Open Access. Powered by Scholars. Published by Universities.®

Nanotechnology Fabrication Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Nanotechnology Fabrication

Fabrication Of Black Phosphorus Terahertz Photoconductive Antennas, Nathan Tanner Sawyers May 2023

Fabrication Of Black Phosphorus Terahertz Photoconductive Antennas, Nathan Tanner Sawyers

Physics Undergraduate Honors Theses

Terahertz (THz) photoconductive antennas (PCAs) using 40nm thin-film flakes of black phosphorus (BP) and hexagonal boron nitride (hBN) have been shown computationally to be capable of THz emission comparable to those based on GaAs [2]. In this paper, I briefly describe the scientific and practical interest in THz emissions and explain what warrants research into black phosphorus as a photoconductive semiconductor in THz devices. Furthermore, I outline the basic principle of how these antennas work and mention alternative designs produced by other researchers in the past. Finally, I summarize the fabrication process of these antennas, as well as the measurements …


Study Of Thick Indium Gallium Nitride Graded Structures For Future Solar Cell Applications, Manal Abdullah Aldawsari Dec 2021

Study Of Thick Indium Gallium Nitride Graded Structures For Future Solar Cell Applications, Manal Abdullah Aldawsari

Graduate Theses and Dissertations

Indium gallium nitride (InxGa1-xN) materials have held great potential for the optoelectronic industry due to their electrical and optical properties. The tunable band gap that can span the solar spectrum was one of the most significant features that attracted researchers’ attention. The band gap can be varied continuously from 0.77 eV for InN to 3.42 eV for GaN, covering the solar spectrum from near infrared to near ultraviolet. Additionally, it has a high absorption coefficient on the order of ∼105 cm−1, a direct band gap, high radiation resistance, thermal stability, and so on. Nevertheless, the epitaxial growth of high quality …


Design And Characterization Of Standard Cell Library Using Finfets, Phanindra Datta Sadhu Jun 2021

Design And Characterization Of Standard Cell Library Using Finfets, Phanindra Datta Sadhu

Master's Theses

The processors and digital circuits designed today contain billions of transistors on a small piece of silicon. As devices are becoming smaller, slimmer, faster, and more efficient, the transistors also have to keep up with the demands and needs of the daily user. Unfortunately, the CMOS technology has reached its limit and cannot be used to scale down due to the transistor's breakdown caused by short channel effects. An alternative solution to this is the FinFET transistor technology, where the gate of the transistor is a three dimensional fin that surrounds the transistor and prevents the breakdown caused by scaling …


Individual Copper Nanowire Decorated By Gold Nanoparticles For Surface Enhanced Raman Scattering, Roshan Guttikonda Jan 2009

Individual Copper Nanowire Decorated By Gold Nanoparticles For Surface Enhanced Raman Scattering, Roshan Guttikonda

UNLV Theses, Dissertations, Professional Papers, and Capstones

In this Thesis, I discuss the theory, implementation and applications of Surface enhanced Raman scattering (SERS). Surface enhanced Raman scattering has been used to detect 4 mercaptopyridine molecules. On a Silicon wafer, Gold nanoparticles are deposited onto Copper nanowires. Hotspots occur at the small gap (less than 10nm) between the nanowire and nanoparticle. The interaction of the electromagnetic field of the incident laser and the surface plasmon resonances of the metal nanoparticles at the hot spots enhances the Raman scattering signal of the adsorbed pyridine molecule (10 -3 M ). The dependence of SERS signal on the polarization angle of …