Open Access. Powered by Scholars. Published by Universities.®

Nanotechnology Fabrication Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Nanotechnology Fabrication

Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron Aug 2023

Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron

Masters Theses

Here we present the design, assembly and successful ion trapping of a room-temperature ion trap system with a custom designed and fabricated surface electrode ion trap, which allows for rapid prototyping of novel trap designs such that new chips can be installed and reach UHV in under 2 days. The system has demonstrated success at trapping and maintaining both single ions and cold crystals of ions. We achieve this by fabricating our own custom surface Paul traps in the UMass Amherst cleanroom facilities, which are then argon ion milled, diced, mounted and wire bonded to an interposer which is placed …


Modeling And Characterization Of Optical Metasurfaces, Mahsa Torfeh Oct 2021

Modeling And Characterization Of Optical Metasurfaces, Mahsa Torfeh

Masters Theses

Metasurfaces are arrays of subwavelength meta-atoms that shape waves in a compact and planar form factor. During recent years, metasurfaces have gained a lot of attention due to their compact form factor, easy integration with other devices, multi functionality and straightforward fabrication using conventional CMOS techniques. To provide and evaluate an efficient metasurface, an optimized design, high resolution fabrication and accurate measurement is required. Analysis and design of metasurfaces require accurate methods for modeling their interactions with waves. Conventional modeling techniques assume that metasurfaces are locally periodic structures excited by plane waves, restricting their applicability to gradually varying metasurfaces that …


Development Of A Point-Of-Use Testing Platform For Detecting Bacteria Infection In Raw Milk, Xin Xia Aug 2021

Development Of A Point-Of-Use Testing Platform For Detecting Bacteria Infection In Raw Milk, Xin Xia

Masters Theses

The detection and quantification of bacteria are essential to environment and food quality monitoring. Escherichia coli (E. coli) is a common pathogen, also a causative agent of mastitis. Traditional methods usually require samples to be tested in a laboratory. However, sending samples to remote lab increases the cost of time and money spent on delivery. Sometimes, samples can degrade during this long progress and cause inaccuracy. A low cost and reusable sensor is designed to perform on-site quantification. The sensor composed of two layers of asymmetrical mesh electrodes, which is used in coordination magnetic microparticles functionalized with bacterium-specific antibody. Immunological …


Thermal Transport Modeling Of Semiconductor Materials From First Principles, Aliya Qureshi Aug 2020

Thermal Transport Modeling Of Semiconductor Materials From First Principles, Aliya Qureshi

Masters Theses

Over the past few years, the size of semiconductor devices has been shrinking whereas the density of transistors has exponentially increased. Thus, thermal management has become a serious concern as device performance and reliability is greatly affected by heat. An understanding of thermal transport properties at device level along with predictive modelling can lead us to design of new systems and materials tailored according to the thermal conductivity. In our work we first review different models used to calculate thermal conductivity and examine their accuracy using the experimentally measured thermal conductivity for Si. Our results suggest that empirically calculated rates …


Flexible Capacitive Pressure Sensors And Triboelectric Energy Harvesters Using Laser-Assisted Patterning Process For Flexible Hybrid Electronic Applications, Valliammai Palaniappan Jul 2020

Flexible Capacitive Pressure Sensors And Triboelectric Energy Harvesters Using Laser-Assisted Patterning Process For Flexible Hybrid Electronic Applications, Valliammai Palaniappan

Masters Theses

This work focuses on the design, fabrication and characterization of novel flexible capacitive pressure sensors and triboelectric energy harvesters using laser-assisted patterning process for flexible hybrid electronic applications. Initially, the capacitive pressure sensor was developed by fabricating a set of polydimethylsiloxanes (PDMS) dielectric films with pyramid shaped micro-structures using a laser-assisted patterning process. The pressure sensor consists of two electrodes (top and bottom) that were fabricated by depositing silver (Ag) on flexible polyethylene terephthalate (PET) using additive screen-printing process. Finally, the pressure sensor was assembled by attaching the top and bottom Ag electrodes to the smooth side of pyramid shaped …


Analog Computing Using 1t1r Crossbar Arrays, Yunning Li Mar 2018

Analog Computing Using 1t1r Crossbar Arrays, Yunning Li

Masters Theses

Memristor is a novel passive electronic device and a promising candidate for new generation non-volatile memory and analog computing. Analog computing based on memristors has been explored in this study. Due to the lack of commercial electrical testing instruments for those emerging devices and crossbar arrays, we have designed and built testing circuits to implement analog and parallel computing operations. With the setup developed in this study, we have successfully demonstrated image processing functions utilizing large memristor crossbar arrays. We further designed and experimentally demonstrated the first memristor based field programmable analog array (FPAA), which was successfully configured for audio …


Skynet: Memristor-Based 3d Ic For Artificial Neural Networks, Sachin Bhat Oct 2017

Skynet: Memristor-Based 3d Ic For Artificial Neural Networks, Sachin Bhat

Masters Theses

Hardware implementations of artificial neural networks (ANNs) have become feasible due to the advent of persistent 2-terminal devices such as memristor, phase change memory, MTJs, etc. Hybrid memristor crossbar/CMOS systems have been studied extensively and demonstrated experimentally. In these circuits, memristors located at each cross point in a crossbar are, however, stacked on top of CMOS circuits using back end of line processing (BOEL), limiting scaling. Each neuron’s functionality is spread across layers of CMOS and memristor crossbar and thus cannot support the required connectivity to implement large-scale multi-layered ANNs.

This work proposes a new fine-grained 3D integrated circuit technology …


Architecting Np-Dynamic Skybridge, Jiajun Shi Mar 2015

Architecting Np-Dynamic Skybridge, Jiajun Shi

Masters Theses

With the scaling of technology nodes, modern CMOS integrated circuits face severe fundamental challenges that stem from device scaling limitations, interconnection bottlenecks and increasing manufacturing complexities. These challenges drive researchers to look for revolutionary technologies beyond the end of CMOS roadmap. Towards this end, a new nanoscale 3-D computing fabric for future integrated circuits, Skybridge, has been proposed [1]. In this new fabric, core aspects from device to circuit style, connectivity, thermal management and manufacturing pathway are co-architected in a 3-D fabric-centric manner.

However, the Skybridge fabric uses only n-type transistors in a dynamic circuit style for logic and memory …


Development Of Infrared And Terahertz Bolometers Based On Palladium And Carbon Nanotubes Using Roll To Roll Process, Amulya Gullapalli Mar 2015

Development Of Infrared And Terahertz Bolometers Based On Palladium And Carbon Nanotubes Using Roll To Roll Process, Amulya Gullapalli

Masters Theses

Terahertz region in the electromagnetic spectrum is the region between Infrared and Microwave. As the Terahertz region has both wave and particle nature, it is difficult to make a room temperature, fast, and sensitive detector in this region. In this work, we fabricated a Palladium based IR detector and a CNT based THz bolometer.

In Chapter 1, I give a brief introduction of the Terahertz region, the detectors already available in the market and different techniques I can use to test my detector. In Chapter 2, I explain about the Palladium IR bolometer, the fabrication technique I have used, and …


Millimeter Wave Indium Phosphide Heterojunction Bipolar Transistors: Noise Performance And Circuit Applications, Metin Ayata Nov 2014

Millimeter Wave Indium Phosphide Heterojunction Bipolar Transistors: Noise Performance And Circuit Applications, Metin Ayata

Masters Theses

The performance of III-V heterojunction bipolar transistors (HBTs) has improved significantly over the past two decades. Today’s state of the art Indium Phosphide (InP) HBTs have a maximum frequency of oscillation greater than 800 GHz and have been used to realize an amplifier operating above 600 GHz . In comparison to silicon (Si) based devices, III-V HBTs have superior transport properties that enables a higher gain, higher speed, and noise performance, and much higher Johnson figure- of-merit . From this perspective, the InP HBT is one of the most promising candidates for high performance mixed signal electronic systems.


Fabrication And Characterization Of Vertically Aligned Carbon Nanofibers (Vacnf) As Amperometric Biosensors On A Silicon-Compatible Platform, Kimberly Caitlin Macarthur Aug 2012

Fabrication And Characterization Of Vertically Aligned Carbon Nanofibers (Vacnf) As Amperometric Biosensors On A Silicon-Compatible Platform, Kimberly Caitlin Macarthur

Masters Theses

This thesis presents fabrication, characterization and initial results of vertically aligned carbon nanofibers (VACNF)-based electrodes for use as electrochemical sensors. VACNFs are nanostructures that can be fabricated to the desired specifications using a plasma-enhanced chemical-vapor deposition process and are ideal candidates for electrode material because of their excellent electrical and structural properties. The first step of the fabrication of VACNFs on silicon substrates involved photolithography to pattern the interconnects and the catalysts (nickel dots). VACNFs were then grown on silicon substrates from the nickel catalysts, whose size determines the growth of a single nanofiber or a forest of nanofibers. This …


Optimization Of Alternating Current Electrothermal Micropump By Numerical Simulation, Quan Yuan Aug 2010

Optimization Of Alternating Current Electrothermal Micropump By Numerical Simulation, Quan Yuan

Masters Theses

Microfluidic technology has been grown rapidly in the past decade. Microfluidics can find wide applications in multiple fields such as medicine, electronics, chemical and biology. Micro-pumping is an essential part of a microfluidic system. This thesis presents the optimization process of AC electro-thermal micropump with respect to the geometry of electrode array and channel height.

The thesis first introduces the theories of AC electrokinetic including dielectrophoresis, AC electro-osmosis (ACEO) and AC electro-thermal (ACET). Also presented are the basic theory and governing equations of microfluidics, the continuity equation, the Navier-Stokes equation, and the conservation of energy equation. AC electro-thermal effect results …