Open Access. Powered by Scholars. Published by Universities.®

Nanotechnology Fabrication Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Nanotechnology Fabrication

Silica-Coated Metallic Nanoparticle-Based Hierarchical Super-Hydrophobic Surfaces Fabricated By Spin-Coating And Inverse Nanotransfer Printing, Shengjie Zhai, Hui Zhao Jun 2019

Silica-Coated Metallic Nanoparticle-Based Hierarchical Super-Hydrophobic Surfaces Fabricated By Spin-Coating And Inverse Nanotransfer Printing, Shengjie Zhai, Hui Zhao

Mechanical Engineering Faculty Research

By combining spin coating and inverse nanotransfer printing, silica-coated gold nanoparticles are patterned onto polydimethylsiloxane (PDMS) superhydrophobic surfaces to form a hierarchical structure. A layer of nanoparticles is spin-coated on a flat silicon substrate serving as the stamp, which is then transferred to the raised regions of PDMS surfaces. Our inverse nanotransfer printing is in contrast to the standard nanotransfer printing, which transfers metal from the raised regions of a stamp to a flat PDMS surface. The fabricated hierarchical surface exhibits a higher contact angle and delays the Cassie-Wenzel transition during evaporation of a sessile droplet, indicating an improvement of …


An Ultrahigh Vacuum Complementary Metal Oxide Silicon Compatible Nonlithographic System To Fabricate Nanoparticle-Based Devices, Arghya Banerjee, Biswajit Das Mar 2008

An Ultrahigh Vacuum Complementary Metal Oxide Silicon Compatible Nonlithographic System To Fabricate Nanoparticle-Based Devices, Arghya Banerjee, Biswajit Das

Electrical & Computer Engineering Faculty Research

Nanoparticles of metals and semiconductors are promising for the implementation of a variety of photonic and electronic devices with superior performances and new functionalities. However, their successful implementation has been limited due to the lack of appropriate fabrication processes that are suitable for volume manufacturing. The current techniques for the fabrication of nanoparticles either are solution based, thus requiring complex surface passivation, or have severe constraints over the choice of particle size and material. We have developed an ultrahigh vacuum system for the implementation of a complex nanosystem that is flexible and compatible with the silicon integrated circuit process, thus …


Investigation Of Nanoporous Thin-Film Alumina Templates, Biswajit Das May 2004

Investigation Of Nanoporous Thin-Film Alumina Templates, Biswajit Das

Electrical & Computer Engineering Faculty Research

This paper presents the results of a systematic study of the fabrication of thin-film alumina templates on silicon and other substrates. Such templates are of significant interest for the low-cost implementation of semiconductor and metal nanostructure arrays. In addition, thin-film alumina templates on silicon have the potential for nanostructure integration with silicon electronics. Formation of thin-film alumina templates on silicon substrates was investigated under different fabrication conditions, and the dependence of pore morphology and pore formation rate on process parameters was evaluated. In addition, process conditions for improved pore size distribution and periodicity were determined. The template/silicon interface, important for …