Open Access. Powered by Scholars. Published by Universities.®

Nanotechnology Fabrication Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Applied sciences

Publication Year

Articles 1 - 8 of 8

Full-Text Articles in Nanotechnology Fabrication

Fabrication Of Infrared Photodetectors Utilizing Lead Selenide Nanocrystals, Justin Anthony Hill Dec 2016

Fabrication Of Infrared Photodetectors Utilizing Lead Selenide Nanocrystals, Justin Anthony Hill

Graduate Theses and Dissertations

Colloidal lead selenide and lead selenide / lead sulfide core/shell nanocrystals were grown using a wet chemical synthesis procedure. Absorbance and photoluminescence measurements were made to verify the quality of the produced nanocrystals. Absorbance spectra were measured at room temperature, while photoluminescence spectra were measured at 77 K. Organic ligands were exchanged for shorter ligands in order to increase the conductivity of the nanocrystals. Absorption and PL spectra for both core and core/shell nanocrystals were compared. Interdigital photodetector devices with varying channel widths were fabricated by depositing gold onto a glass substrate. Lead selenide nanocrystals were deposited onto these metallic …


Investigation Of Optical Properties Of Zinc Oxide Photodetector, Tyler Chism May 2016

Investigation Of Optical Properties Of Zinc Oxide Photodetector, Tyler Chism

Graduate Theses and Dissertations

UV photodetection devices have many important applications for uses in biological detection, gas sensing, weaponry detection, fire detection, chemical analysis, and many others. Today’s photodetectors often utilize semiconductors such as GaAs to achieve high responsivity and sensitivity. Zinc oxide, unlike many other semiconductors, is cheap, abundant, non-toxic, and easy to grow different morphologies at the micro and nano scale. With the proliferation of these devices also comes the impending need to further study optics and photonics in relation to phononics and plasmonics, and the general principles underlying the interaction of photons with solid state matter and, specifically, semiconductors. For this …


Monodentate, Bidentate And Photocrosslinkable Thiol Ligands For Improving Aqueous Biocompatible Quantum Dots, Hiroko Takeuchi Dec 2013

Monodentate, Bidentate And Photocrosslinkable Thiol Ligands For Improving Aqueous Biocompatible Quantum Dots, Hiroko Takeuchi

Graduate Theses and Dissertations

Water-soluble Quantum Dots (QDs) are highly sensitive fluorescent probes that are often used to study biological species. One of the most common ways to render QDs water-soluble for such applications is to apply hydrophilic thiolated ligands to the QD surface. However, these ligands are labile and can be easily exchanged on the QD surface, which can severely limit their application. As one way to overcome this limitation while maintaining a small colloidal size of QDs, we developed a method to stabilize hydrophilic thiolated ligands on the surface of QDs through the formation of a crosslinked shell using a photocrosslinking approach. …


Investigation Of The Effects Of Rapid Thermal Annealing On Mbe Grown Gaasbi/Gaas Heterostructures For Optoelectronic Devices, Perry C. Grant Dec 2013

Investigation Of The Effects Of Rapid Thermal Annealing On Mbe Grown Gaasbi/Gaas Heterostructures For Optoelectronic Devices, Perry C. Grant

Graduate Theses and Dissertations

High efficiency optoelectronic devices rely on high quality materials making up the device structure. The scope of this thesis investigates the effectiveness of rapid thermal annealing (RTA) at improving the material quality of GaAsBi/GaAs heterostructures. During the fabrication of a device, the contacts of the device had the rapid thermal annealing process accomplished to produce ohmic contacts and this research explored if this annealing treatment degraded the quantum wells that made up the active region of a device. To investigate these effects, a system to measure the photoluminescence of the material system was constructed utilizing Fourier Transform Infrared Spectroscopy. The …


Plasma-Assisted Molecular Beam Epitaxial Growth Of Indium Nitride For Future Device Fabrication, Steven Paul Minor May 2012

Plasma-Assisted Molecular Beam Epitaxial Growth Of Indium Nitride For Future Device Fabrication, Steven Paul Minor

Graduate Theses and Dissertations

The need for energy conservation has heightened the search for new materials that can reduce energy consumption or produce energy by the means of photovoltaic cells. III-nitride alloys show promise for these applications due to their generally good transport properties and ability to withstand high power applications. Along with these, this family of semiconductor alloys has a direct bandgap energy range (0.7-6.2 eV) which spans the entire visible spectrum and encompasses a large portion of the available solar spectrum. Of the three root III-nitride semiconductors, AlN, GaN, and InN, InN has only recently become attainable epitaxially with qualities good enough …


Fabrication Of Vertical Silicon Nanowires Through Metal Assisted Deposition, Matthew Garett Young May 2012

Fabrication Of Vertical Silicon Nanowires Through Metal Assisted Deposition, Matthew Garett Young

Graduate Theses and Dissertations

Controlled and ordered growth of Si nanowires through a low temperature fabrication method compatible with CMOS processing lines is a highly desirable replacement to future electronic fabrication technologies as well as a candidate for a low cost route to inexpensive photovoltaics. This stems from the fact that traditional CMOS based electronics are hitting physical barriers that are slowing the Moore's Law trend as well as the demand for an inexpensive solar cell technology that can obtain grid parity. A fractional factorial growth study is presented that compares the growth of Au and Al catalyzed Si nanowires at temperatures ranging from …


Photodetectors And Photovoltaic Devices Based On Semiconductor Nanomaterials, Jiang Wu Dec 2011

Photodetectors And Photovoltaic Devices Based On Semiconductor Nanomaterials, Jiang Wu

Graduate Theses and Dissertations

Photodetectors based various nanostructures and plasmon enhanced solar cells are investigated in this dissertation. The motivation of the dissertation rise is driven by urgent need of both high efficiency photodetectors and solar cells.

First, quantum dot infrared photodetectors have been intensely investigated due to their promise in high performance photodetectors. However, the strain-driven growth of quantum dots has hindered the progress of quantum dot photodetectors. The presence of strain in the device presents complexity in designing as well as defects. Therefore, in this project, new designs of quantum dot photodetector structures are presented to improve the control over detection wavelength. …


Fabrication Of Horizontal Silicon Nanowires Using A Thin Aluminum Film As A Catalyst, Khaja Hafeezuddin Mohammed Dec 2011

Fabrication Of Horizontal Silicon Nanowires Using A Thin Aluminum Film As A Catalyst, Khaja Hafeezuddin Mohammed

Graduate Theses and Dissertations

Silicon nanowires have been the topic of research in recent years for their significant attention from the electronics industry to grow even smaller electronic devices. The semiconductor industry is built on silicon. Silicon nanowires can be the building blocks for future nanoelectronic devices. Various techniques have also been reported in fabricating the silicon nanowires. But most of the techniques reported, grow vertical silicon nanowires. In the semiconductor industry, integrated circuits are designed and fabricated in a horizontal architecture i.e. the device layout is flat compared to the substrate. When vertical silicon nanowires are introduced in the semiconductor industry, a whole …