Open Access. Powered by Scholars. Published by Universities.®

Nanotechnology Fabrication Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Nanotechnology Fabrication

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Investigation Of Membrane Based Processes For Biomedical Applications, Efecan Pakkaner Jul 2021

Investigation Of Membrane Based Processes For Biomedical Applications, Efecan Pakkaner

Graduate Theses and Dissertations

As substantial developments were achieved in nanotechnology and polymer engineering, especially in the last few decades, the use of membranes and membrane-based procedures was found to be expanding into more and more research and development areas; including biological engineering, life sciences and biomedical engineering. Not only have they been the main focus of meaningful research, but they have also been the main pieces of the solutions to very thorny problems encountered within a wide range of applications from microfluidics to water treatment, thanks to their versatility, cost-effectiveness and biocompatibility, when compared to conventional separation techniques. To celebrate and embrace these …


Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand Jan 2021

Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand

Dissertations and Theses

Localized chemical delivery plays an essential role in the fundamental information transfers within biological systems. Thus, the ability to mimic the natural chemical signal modulation would provide significant contributions to understand the functional signaling pathway of biological cells and develop new prosthetic devices for neurological disorders. In this paper, we demonstrate a light-controlled hydrogel platform that can be used for localized chemical delivery in a high spatial resolution. By utilizing the photothermal behavior of graphene-hydrogel composites confined within micron-sized fluidic channels, patterned light illumination creates the parallel and independent actuation of chemical release in a group of fluidic ports. The …


Approaches To Studying Bacterial Biofilms In The Bioeconomy With Nanofabrication Techniques And Engineered Platforms., Michelle Caroline Halsted Dec 2020

Approaches To Studying Bacterial Biofilms In The Bioeconomy With Nanofabrication Techniques And Engineered Platforms., Michelle Caroline Halsted

Doctoral Dissertations

Studies that estimate more than 90% of bacteria subsist in a biofilm state to survive environmental stressors. These biofilms persist on man-made and natural surfaces, and examples of the rich biofilm diversity extends from the roots of bioenergy crops to electroactive biofilms in bioelectrochemical reactors. Efforts to optimize microbial systems in the bioeconomy will benefit from an improved fundamental understanding of bacterial biofilms. An understanding of these microbial systems shows promise to increase crop yields with precision agriculture (e.g. biosynthetic fertilizer, microbial pesticides, and soil remediation) and increase commodity production yields in bioreactors. Yet conventional laboratory methods investigate these micron-scale …


Fabrication And Characterization Of Nanofiber Nylon-6-Mwcnt As An Electrochemical Sensor For Sodium Ions Concentration Detection In Sweat, Kelsey Mills Jan 2019

Fabrication And Characterization Of Nanofiber Nylon-6-Mwcnt As An Electrochemical Sensor For Sodium Ions Concentration Detection In Sweat, Kelsey Mills

Williams Honors College, Honors Research Projects

Fabrication and characterization nylon-6-MWCNT nanofiber as an electrochemical sensor to detect sodium ion concentrations specifically in sweat. Using contact angle to determine surface morphology and chronoamperometry testing to identify ideal sensor conditions, tests optimized parameters like weight percent of nylon or other polymers, carbon nanotube (CNT) isomer, and solution concentration to determine reproducibility of functional sensors. Utilizing the electric qualities of carbon nanotubes partnered with the sodium ion selectivity of calixarene treatment and polymers unique properties like flexibility and scalability create open an arena for optimizing sodium ion sensors for further development for functional prototypes. Morphology tests showed that the …


Multivariate Analysis For The Quantification Of Transdermal Volatile Organic Compounds In Humans By Proton Exchange Membrane Fuel Cell System, Ahmed Hasnain Jalal Nov 2018

Multivariate Analysis For The Quantification Of Transdermal Volatile Organic Compounds In Humans By Proton Exchange Membrane Fuel Cell System, Ahmed Hasnain Jalal

FIU Electronic Theses and Dissertations

In this research, a proton exchange membrane fuel cell (PEMFC) sensor was investigated for specific detection of volatile organic compounds (VOCs) for point-of-care (POC) diagnosis of the physiological conditions of humans. A PEMFC is an electrochemical transducer that converts chemical energy into electrical energy. A Redox reaction takes place at its electrodes whereas the volatile biomolecules (e.g. ethanol) are oxidized at the anode and ambient oxygen is reduced at the cathode. The compounds which were the focus of this investigation were ethanol (C2H5OH) and isoflurane (C3H2ClF5O), but theoretically, the sensor …


Desulfovibrio Desulfuricans G20 Tetraheme Cytochrome Structure At 1.5 A˚ And Cytochrome Interaction With Metal Complexes, Mrunalini Pattarkine, J J. Tanner, C A. Bottoms, Y H. Lee, Judy D. Wall May 2006

Desulfovibrio Desulfuricans G20 Tetraheme Cytochrome Structure At 1.5 A˚ And Cytochrome Interaction With Metal Complexes, Mrunalini Pattarkine, J J. Tanner, C A. Bottoms, Y H. Lee, Judy D. Wall

Faculty Works

The structure of the type I tetraheme cytochrome c3 from Desulfovibrio desulfuricans G20 was determined to 1.5 A˚ by X-ray crystallography. In addition to the oxidized form, the structure of the molybdate-bound form of the protein was determined from oxidized crystals soaked in sodium molybdate. Only small structural shifts were obtained with metal binding, consistent with the remarkable structural stability of this protein. In vitro experiments with pure cytochrome showed that molybdate could oxidize the reduced cytochrome, although not as rapidly as U(VI) present as uranyl acetate. Alterations in the overall conformation and thermostability of the metal-oxidized protein were investigated …


Studies On The Formation Of Dna-Cationic Lipid Composite Films And Dna Hybridization In The Composites, Murali Sastry, Vidya Ramakrishnan, Mrunalini Pattarkine, Krishna N. Ganesh May 2001

Studies On The Formation Of Dna-Cationic Lipid Composite Films And Dna Hybridization In The Composites, Murali Sastry, Vidya Ramakrishnan, Mrunalini Pattarkine, Krishna N. Ganesh

Faculty Works

The formation of composite films of double-stranded DNA and cationic lipid molecules (octadecylamine, ODA) and the hybridization of complementary single-stranded DNA molecules in such composite films are demonstrated. The immobilization of DNA is accomplished by simple immersion of a thermally evaporated ODA film in the DNA solution at close to physiological pH. The entrapment of the DNA molecules in the cationic lipid film is dominated by attractive electrostatic interaction between the negatively charged phosphate backbone of the DNA molecules and the protonated amine molecules in the thermally evaporated film and has been quantified using quartz crystal microgravimetry (QCM). Fluorescence studies …


Cationic Surfactant Mediated Hybridization And Hydrophobization Of Dna Molecules At The Liquid/Liquid Interface And Their Phase Transfer, Murali Sastry, Ashavani Kumar, Mrunalini Pattarkine, Vidya Ramakrishnan, Krishna N. Ganesh Jan 2001

Cationic Surfactant Mediated Hybridization And Hydrophobization Of Dna Molecules At The Liquid/Liquid Interface And Their Phase Transfer, Murali Sastry, Ashavani Kumar, Mrunalini Pattarkine, Vidya Ramakrishnan, Krishna N. Ganesh

Faculty Works

Hybridization of complementary oligonucleotides mediated by a cationic surfactant at the water/hexane interface leads to hydrophobic, double-helical DNA which may be readily phase transferred to the organic phase and cast into thin films on solid substrates.


Hybridization Of Dna By Sequential Immobilization Of Oligonucleotides At The Air-Water Interface, Murali Sastry, Vidya Ramakrishnan, Mrunalini Pattarkine, Anand Gole, K. N. Ganesh Nov 2000

Hybridization Of Dna By Sequential Immobilization Of Oligonucleotides At The Air-Water Interface, Murali Sastry, Vidya Ramakrishnan, Mrunalini Pattarkine, Anand Gole, K. N. Ganesh

Faculty Works

The hybridization of DNA by sequential electrostatic and hydrogen-bonding immobilization of single-stranded complementary oligonucleotides at the air-water interface with cationic Langmuir monolayers is demonstrated. The complexation of the single-stranded DNA molecules with octadecylamine (ODA) Langmuir monolayers was followed in time by monitoring the pressure-area isotherms. A large (and slow) expansion of the ODA monolayer was observed during each stage of complexation in the following sequence: primary single-stranded DNA followed by complementary single-stranded DNA followed by the intercalator, ethidium bromide. Langmuir-Blodgett (LB) films of the ODA-DNA complex were formed on different substrates and characterized using quartz-crystal microgravimetry (QCM), Fourier transform infrared …


Anion Induced Blue To Purple Transition In Bacteriorhodopsin, Mrunalini Pattarkine, Anil K. Singh Jun 1996

Anion Induced Blue To Purple Transition In Bacteriorhodopsin, Mrunalini Pattarkine, Anil K. Singh

Faculty Works

Purple membrane (PM, λ" role="presentation">λmax" role="presentation">max 570 nm) of H. halobium on treatment with sulphuric acid changes its colour to blue (λ" role="presentation">λmax" role="presentation">max 608 nm). The purple chromophore can be regenerated from the blue chromophore by exogeneous addition of anions such as CI−" role="presentation">− and HPO42−" role="presentation">2−4. Chloride ion is found to be more effective than the dibasic phosphate ion in regenerating the purple chromophore. Nevertheless, one thing common to the anion regeneration is that both CI−" role="presentation">− and HPO42−" role="presentation">2−4 show marked pH effect. At pH 1.0 the efficiency of …