Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Electronic Devices and Semiconductor Manufacturing

Skin Effect Suppression In Infrared-Laser Irradiated Planar Multi-Walled Carbon Nanotube/ Cu Conductors, Kamran Keramatnejad, Yang Gao, Yunshen Zhou, Hossein Rabiee Glogir, Mengmeng Wang, Yongfeng Lu Oct 2015

Skin Effect Suppression In Infrared-Laser Irradiated Planar Multi-Walled Carbon Nanotube/ Cu Conductors, Kamran Keramatnejad, Yang Gao, Yunshen Zhou, Hossein Rabiee Glogir, Mengmeng Wang, Yongfeng Lu

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Skin effect suppression in planar multi-walled carbon nanotube (MWCNT)/Copper (Cu) conductors was realized at the 0-10 MHz frequency range through infrared laser irradiation of MWCNTs, which were coated on the surface of the Cu substrate via the electrophoretic deposition (EPD) method. The effect of laser irradiation and its power density on electrical and structural properties of the MWCNT/Cu conductors was investigated using a wavelength-tunable CO2 laser and then comparing the performance of the samples prepared at different conditions with that of pristine Cu. The irradiation at λ=9.219 μm proved to be effective in selective delivery of energy towards depths close …


Low Clutter Method For Bistatic Rcs Measurements, Peter J. Collins Feb 2015

Low Clutter Method For Bistatic Rcs Measurements, Peter J. Collins

AFIT Patents

A bistatic radar measurement system is provided having a radar source configured to produce a radio frequency signal. A transmitting antenna is configured to transmit the radio frequency signal toward a target. A receiving antenna is configured to receive a reflected radio frequency signal from the target. A support system is configured to support the receiving antenna. The support system includes a plurality of low scattering dielectric strings configured to orient the receiving antenna.


Electronic Desalting For Controlling The Ionic Environment In Droplet-Based Biosensing Platforms, Vikhram Vilasur Swaminathan, Piyush Dak, Bobby Reddy Jr, Eric Salm, Carlos Duarte-Guevara, Yu Zhong, Andrew Fischer, Yi-Shao Liu, Rashid Bashir Feb 2015

Electronic Desalting For Controlling The Ionic Environment In Droplet-Based Biosensing Platforms, Vikhram Vilasur Swaminathan, Piyush Dak, Bobby Reddy Jr, Eric Salm, Carlos Duarte-Guevara, Yu Zhong, Andrew Fischer, Yi-Shao Liu, Rashid Bashir

Birck and NCN Publications

The ability to control the ionic environment in saline waters and aqueous electrolytes is useful for desalination as well as electronic biosensing. We demonstrate a method of electronic desalting at micro-scale through on-chip micro electrodes. We show that, while desalting is limited in bulk solutions with unlimited availability of salts, significant desalting of ≥1 mM solutions can be achieved in sub-nanoliter volume droplets with diameters of ∼250 μm. Within these droplets, by using platinum-black microelectrodes and electrochemical surface treatments, we can enhance the electrode surface area to achieve >99% and 41% salt removal in 1 mM and 10 mM salt …


Bifacial Si Heterojunction-Perovskite Organic-Inorganic Tandem To Produce Highly Efficient (Η T * ~ 33%) Solar Cell, Reza Asadpour, Raghu Vamsi Krishna Chavali, Mohammad Ryyan Khan, Muhammad Ashraful Alam Jan 2015

Bifacial Si Heterojunction-Perovskite Organic-Inorganic Tandem To Produce Highly Efficient (Η T * ~ 33%) Solar Cell, Reza Asadpour, Raghu Vamsi Krishna Chavali, Mohammad Ryyan Khan, Muhammad Ashraful Alam

Department of Electrical and Computer Engineering Faculty Publications

As single junction photovoltaic (PV) technologies both Si heterojunction (HIT) and perovskite based solar cells promise high efficiencies at low cost. Intuitively a traditional tandem cell design with these cells connected in series is expected to improve the efficiency further. Using a self-consistent numerical modeling of optical and transport characteristics however we find that a traditional series connected tandem design suffers from low JSC due to band-gap mismatch and current matching constraints. Specifically a traditional tandem cell with state-of-the-art HIT ( η=24% ) and perovskite ( η=20% ) sub-cells provides only a modest tandem efficiency of ηT~ 25%. …


Multiferroic Tunnel Junctions And Ferroelectric Control Of Magnetic State At Interface, Y. W. Yin, M. Raju, W. J. Hu, John D. Burton, Y.-M. Kim, A. Y. Borisevich, S. J. Pennycook, S. M. Yang, T. W. Noh, Alexei Gruverman, X. G. Li, Z. D. Zhang, Evgeny Y. Tsymbal, Qi Li Jan 2015

Multiferroic Tunnel Junctions And Ferroelectric Control Of Magnetic State At Interface, Y. W. Yin, M. Raju, W. J. Hu, John D. Burton, Y.-M. Kim, A. Y. Borisevich, S. J. Pennycook, S. M. Yang, T. W. Noh, Alexei Gruverman, X. G. Li, Z. D. Zhang, Evgeny Y. Tsymbal, Qi Li

Alexei Gruverman Publications

As semiconductor devices reach ever smaller dimensions, the challenge of power dissipation and quantum effect place a serious limit on the future device scaling. Recently, a multiferroic tunnel junction (MFTJ) with a ferroelectric barrier sandwiched between two ferromagnetic electrodes has drawn enormous interest due to its potential applications not only in multi-level data storage but also in electric field controlled spintronics and nanoferronics. Here, we present our investigations on four-level resistance states, giant tunneling electroresistance (TER) due to interfacial magnetoelectric coupling, and ferroelectric control of spin polarized tunneling in MFTJs. Coexistence of large tunneling magnetoresistance and TER has been observed …