Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Electronic Devices and Semiconductor Manufacturing

An Accurate And Efficient Electro-Thermal Compact Model Of Sic Power Mosfet Including Third Quadrant Behavior, Arman Ur Rashid May 2021

An Accurate And Efficient Electro-Thermal Compact Model Of Sic Power Mosfet Including Third Quadrant Behavior, Arman Ur Rashid

Graduate Theses and Dissertations

Due to narrower bandgap and lower critical electric field, silicon (Si) power devices have reached their limit in terms of the maximum blocking voltage capability. Exploiting this limitation, wide bandgap devices, namely silicon carbide (SiC) and gallium nitride (GaN) devices, are increasingly encroaching on the lucrative power electronics market. Unlike GaN, SiC devices can exploit most of the established fabrication techniques of Si power devices. Having substrate of the same material, vertical device structures with higher breakdown capabilities are feasible in SiC, unlike their GaN counterpart. Also, the excellent thermal conductivity of SiC, compared to GaN and Si, let SiC …


Characterization, Analysis, And Application Of Wbg Power Devices For Future Power Conversion Systems, Ali Mahmoud Salman Al-Bayati Jan 2021

Characterization, Analysis, And Application Of Wbg Power Devices For Future Power Conversion Systems, Ali Mahmoud Salman Al-Bayati

Electronic Theses and Dissertations

Semiconductor power devices are the most momentous constituents of any power converter system. Fast switching, compactness, high performance and efficiency, and high temperature operation are the exacting challenges experienced by conventional silicon (Si) power device based power converters in many applications. In this dissertation, the wide bandgap (WBG) power devices are studied and used to transcend the limitations imposed by the Si power devices. It mainly focuses on characterization and analysis of the behavior of WBG power devices as well as design and development of efficient, high performance, and reliable dc–dc power converters based on WBG technology. First, using computer …


High-Temperature Optoelectronic Device Characterization And Integration Towards Optical Isolation For High-Density Power Modules, Syam Madhusoodhanan Dec 2020

High-Temperature Optoelectronic Device Characterization And Integration Towards Optical Isolation For High-Density Power Modules, Syam Madhusoodhanan

Graduate Theses and Dissertations

Power modules based on wide bandgap (WBG) materials enhance reliability and considerably reduce cooling requirements that lead to a significant reduction in total system cost and weight. Although these innovative properties lead power modules to higher power density, some concerns still need to be addressed to take full advantage of WBG-based modules. For example, the use of bulky transformers as a galvanic isolation system to float the high voltage gate driver limits further size reduction of the high-temperature power modules. Bulky transformers can be replaced by integrating high-temperature optocouplers to scale down power modules further and achieve disrupting performance in …