Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Electronic Devices and Semiconductor Manufacturing

An Ultrahigh Vacuum Complementary Metal Oxide Silicon Compatible Nonlithographic System To Fabricate Nanoparticle-Based Devices, Arghya Banerjee, Biswajit Das Mar 2008

An Ultrahigh Vacuum Complementary Metal Oxide Silicon Compatible Nonlithographic System To Fabricate Nanoparticle-Based Devices, Arghya Banerjee, Biswajit Das

Electrical & Computer Engineering Faculty Research

Nanoparticles of metals and semiconductors are promising for the implementation of a variety of photonic and electronic devices with superior performances and new functionalities. However, their successful implementation has been limited due to the lack of appropriate fabrication processes that are suitable for volume manufacturing. The current techniques for the fabrication of nanoparticles either are solution based, thus requiring complex surface passivation, or have severe constraints over the choice of particle size and material. We have developed an ultrahigh vacuum system for the implementation of a complex nanosystem that is flexible and compatible with the silicon integrated circuit process, thus …


Nonthermal Laser-Induced Formation Of Crystalline Ge Quantum Dots On Si(100), M. S. Hegazy, H. E. Elsayed-Ali Jan 2008

Nonthermal Laser-Induced Formation Of Crystalline Ge Quantum Dots On Si(100), M. S. Hegazy, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The effects of laser-induced electronic excitations on the self-assembly of Ge quantum dots on Si (100) - (2×1) grown by pulsed laser deposition are studied. Electronic excitations due to laser irradiation of the Si substrate and the Ge film during growth are shown to decrease the roughness of films grown at a substrate temperature of ∼120 °C. At this temperature, the grown films are nonepitaxial. Electronic excitation results in the formation of an epitaxial wetting layer and crystalline Ge quantum dots at ∼260 °C, a temperature at which no crystalline quantum dots form without excitation under the same deposition conditions. …


Response Characterization Of Electroactive Polymers As Mechanical Sensors, G. Alici, Geoffrey M. Spinks, J. D. Madden, Y. Wu, G G. Wallace Jan 2008

Response Characterization Of Electroactive Polymers As Mechanical Sensors, G. Alici, Geoffrey M. Spinks, J. D. Madden, Y. Wu, G G. Wallace

Faculty of Engineering - Papers (Archive)

The characterization of the dynamic response (including transfer function identification) of trilayer polypyrrole (PPy) type conducting polymer sensors is presented. The sensor was built like a cantilever beam with the free end stimulated through a mechanical lever system, which provided displacement inputs. The voltage generated and current passing between the two outer PPy layers as a result of the input was measured to model the output/input behavior of the sensors based on their experimental current/displacement and voltage/displacement frequency responses. We specifically targeted the low-frequency behavior of the sensor as it is a relatively slowsystem. Experimental transfer function models were generated …