Open Access. Powered by Scholars. Published by Universities.®

Controls and Control Theory Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Controls and Control Theory

Perspectives On Design Considerations Inspired By Security And Quantum Technology In Cyberphysical Systems For Process Engineering, Helen Durand, Jihan Abou Halloun, Kip Nieman, Keshav Kasturi Rangan Jan 2023

Perspectives On Design Considerations Inspired By Security And Quantum Technology In Cyberphysical Systems For Process Engineering, Helen Durand, Jihan Abou Halloun, Kip Nieman, Keshav Kasturi Rangan

Chemical Engineering and Materials Science Faculty Research Publications

Advances in computer science have been a driving force for change in process systems engineering for decades. Faster computers, expanded computing resources, simulation software, and improved optimization algorithms have all changed chemical engineers’ abilities to predict, control, and optimize process systems. Two newer areas relevant to computer science that are impacting process systems engineering are cybersecurity and quantum computing. This work reviews some of our group’s recent work in control-theoretic approaches to control system cybersecurity and touches upon the use of quantum computers, with perspectives on the relationships between process design and control when cybersecurity and quantum technologies are of …


Improving The Flexibility And Robustness Of Machine Tending Mobile Robots, Richard Ethan Hollingsworth Jan 2023

Improving The Flexibility And Robustness Of Machine Tending Mobile Robots, Richard Ethan Hollingsworth

Theses and Dissertations

While traditional manufacturing production cells consist of a fixed base robot repetitively performing tasks, the Industry 5.0 flexible manufacturing cell (FMC) aims to bring Autonomous Industrial Mobile Manipulators (AIMMs) to the factory floor. Composed of a wheeled base and a robot arm, these collaborative robots (cobots) operate alongside people while autonomously performing tasks at different workstations. AIMMs have been tested in real production systems, but the development of the control algorithms necessary for automating a robot that is a combination of two cobots remains an open challenge before the large scale adoption of this technology occurs in industry. Currently popular …


Actuator Cyberattack Handling Using Lyapunov-Based Economic Model Predictive Control, Keshav Kasturi Rangan, Henrique Oyama, Helen Durand Jun 2022

Actuator Cyberattack Handling Using Lyapunov-Based Economic Model Predictive Control, Keshav Kasturi Rangan, Henrique Oyama, Helen Durand

Chemical Engineering and Materials Science Faculty Research Publications

Cybersecurity has gained increasing interest as a consequence of the potential impacts of cyberattacks on profits and safety. While attacks can affect various components of a plant, prior work from our group has focused on the impact of cyberattacks on control components such as process sensors and actuators and the development of detection strategies for cybersecurity derived from control theory. In this work, we provide greater focus on actuator attacks; specifically, we extend a detection and control strategy previously applied for sensor attacks and based on an optimization-based control technique called Lyapunov-based economic model predictive control (LEMPC) to detect attacks …


Challenges And Opportunities For Next-Generation Manufacturing In Space, Kip Nieman, A. F. Leonard, Katie Tyrell, Dominic Messina, Rebecca Lopez, Helen Durand Jun 2022

Challenges And Opportunities For Next-Generation Manufacturing In Space, Kip Nieman, A. F. Leonard, Katie Tyrell, Dominic Messina, Rebecca Lopez, Helen Durand

Chemical Engineering and Materials Science Faculty Research Publications

With commercial space travel now a reality, the idea that people might spend time on other planets in the future seems to have greater potential. To make this possible, however, there needs to be flexible means for manufacturing in space to enable tooling or resources to be created when needed to handle unexpected situations. Next-generation manufacturing paradigms offer significant potential for the kind of flexibility that might be needed; however, they can result in increases in computation time compared to traditional control methods that could make many of the computing resources already available on earth attractive for use. Furthermore, resilience …


Improvement Of Stability Of A Grid-Connected Inverter With An Lcl Filter By Robust Strong Active Damping And Model Predictive Control, Seungyong Lee May 2021

Improvement Of Stability Of A Grid-Connected Inverter With An Lcl Filter By Robust Strong Active Damping And Model Predictive Control, Seungyong Lee

Graduate Theses and Dissertations

This study addresses development and implementation of robust control methods for a three-phase grid-connected voltage source inverter (VSI) accompanied by an inductive-capacitive-inductive (LCL) filter. A challenge of current control for the VSI is LCL filter resonance near to the control stability boundary, which interacts with the inverter control switching actions and creates the possibility of instability. In general, active damping is needed to stabilize the system and ensure robust performance in steady-state and dynamic responses. While many active damping methods have been proposed to resolve this issue, capacitor-current-feedback active damping has been most widely used for its simple implementation.

There …


Nonlinear Model Predictive Control Of Wave Energy Converter, Isha Malekar Jan 2021

Nonlinear Model Predictive Control Of Wave Energy Converter, Isha Malekar

Dissertations, Master's Theses and Master's Reports

In this report model predictive control (MPC) is applied to a simulated, spherical, point absorber wave energy converter to maximize energy extraction. Constraints are applied to the buoy's displacement and the power take-off (PTO) generator force. The WEC's "truth” model uses nonlinear Froude-Krylov (FK) hydrostatic and hydrodynamic forces. This is in contrast with previous studies where linear approximations are used in the form of a hydrostatic stiffness force and a wave excitation force. The nonlinear forces become significant when the vertical displacement of the buoy exceeds about 40% of the buoy's radius. Two versions of MPC are compared where optimal …


Integrated Cyberattack Detection And Resilient Control Strategies Using Lyapunov-Based Economic Model Predictive Control, Henrique Oyama, Helen Durand Oct 2020

Integrated Cyberattack Detection And Resilient Control Strategies Using Lyapunov-Based Economic Model Predictive Control, Henrique Oyama, Helen Durand

Chemical Engineering and Materials Science Faculty Research Publications

The use of an integrated system framework, characterized by numerous cyber/physical components (sensor measurements, signals to actuators) connected through wired/wireless networks, has not only increased the ability to control industrial systems, but also the vulnerabilities to cyberattacks. State measurement cyberattacks could pose threats to process control systems since feedback control may be lost if the attack policy is not thwarted. Motivated by this, we propose three detection concepts based on Lyapunov‐based economic model predictive control (LEMPC) for nonlinear systems. The first approach utilizes randomized modifications to an LEMPC formulation online to potentially detect cyberattacks. The second method detects attacks when …


On Accounting For Equipment-Control Interactions In Economic Model Predictive Control Via Process State Constraints, Helen Durand Feb 2019

On Accounting For Equipment-Control Interactions In Economic Model Predictive Control Via Process State Constraints, Helen Durand

Chemical Engineering and Materials Science Faculty Research Publications

Traditionally, chemical processes have been operated at steady-state; however, recent work on economic model predictive control (EMPC) has indicated that some processes may be operated in a more economically-optimal fashion under a time-varying operating policy. It is unclear how time-varying operating policies may impact process equipment, which must be investigated for safety and profit reasons. It has traditionally been considered that constraints on process states can be added to EMPC design to prevent the controller from computing control actions which create problematic operating conditions for process equipment. However, no rigorous investigation has yet been performed to analyze whether, when a …


State Measurement Spoofing Prevention Through Model Predictive Control Design, Helen Durand Aug 2018

State Measurement Spoofing Prevention Through Model Predictive Control Design, Helen Durand

Chemical Engineering and Materials Science Faculty Research Publications

Security of chemical process control systems against cyberattacks is critical due to the potential for injuries and loss of life when chemical process systems fail. A potential means by which process control systems may be attacked is through the manipulation of the measurements received by the controller. One approach for addressing this is to design controllers that make manipulating the measurements received by the controller in any meaningful fashion very difficult, making the controllers a less attractive target for a cyberattack of this type. In this work, we develop a model predictive control (MPC) implementation strategy that incorporates Lyapunov-based stability …


Simulation And Performance Evaluation Of Algorithms For Unmanned Aircraft Conflict Detection And Resolution, Jeffrey H. Ledet May 2016

Simulation And Performance Evaluation Of Algorithms For Unmanned Aircraft Conflict Detection And Resolution, Jeffrey H. Ledet

University of New Orleans Theses and Dissertations

The problem of aircraft conflict detection and resolution (CDR) in uncertainty is addressed in this thesis. The main goal in CDR is to provide safety for the aircraft while minimizing their fuel consumption and flight delays. In reality, a high degree of uncertainty can exist in certain aircraft-aircraft encounters especially in cases where aircraft do not have the capabilities to communicate with each other. Through the use of a probabilistic approach and a multiple model (MM) trajectory information processing framework, this uncertainty can be effectively handled. For conflict detection, a randomized Monte Carlo (MC) algorithm is used to accurately detect …


Model Predictive Control Of Cstr Based On Local Model Networks, Ruiyao Gao, Aidan O'Dwyer, Eugene Coyle Jan 2002

Model Predictive Control Of Cstr Based On Local Model Networks, Ruiyao Gao, Aidan O'Dwyer, Eugene Coyle

Conference papers

A non-linear predictive controller is presented. It judiciously combines predictive controllers with a local model network utilizing a neural-network-like gating system. It avoids the time consuming quadratic optimization calculation, which is normally necessary in non-linear predictive control. A controller simulation on a Continuous Stirred Tank Reactor (CSTR) case study was shown to be satisfactory both in terms of set point tracking and regulation performance over the entire operating range. Moreover, the inherent integration action in the local predictive controller provides zero static offsets.