Open Access. Powered by Scholars. Published by Universities.®

Controls and Control Theory Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Controls and Control Theory

Cooperative Deep Q -Learning Framework For Environments Providing Image Feedback, Krishnan Raghavan, Vignesh Narayanan, Sarangapani Jagannathan Jan 2023

Cooperative Deep Q -Learning Framework For Environments Providing Image Feedback, Krishnan Raghavan, Vignesh Narayanan, Sarangapani Jagannathan

Publications

In this article, we address two key challenges in deep reinforcement learning (DRL) setting, sample inefficiency, and slow learning, with a dual-neural network (NN)-driven learning approach. In the proposed approach, we use two deep NNs with independent initialization to robustly approximate the action-value function in the presence of image inputs. In particular, we develop a temporal difference (TD) error-driven learning (EDL) approach, where we introduce a set of linear transformations of the TD error to directly update the parameters of each layer in the deep NN. We demonstrate theoretically that the cost minimized by the EDL regime is an approximation …


Event-Triggered Optimal Adaptive Control Of Partially Unknown Linear Continuous-Time Systems With State Delay, Rohollah Moghadam, Vignesh Narayanan, Sarangapani Jagannathan Nov 2022

Event-Triggered Optimal Adaptive Control Of Partially Unknown Linear Continuous-Time Systems With State Delay, Rohollah Moghadam, Vignesh Narayanan, Sarangapani Jagannathan

Publications

This paper proposes an event-triggered optimal adaptive output feedback control design approach by utilizing integral reinforcement learning (IRL) for linear time-invariant systems with state delay and uncertain internal dynamics. In the proposed approach, the general optimal control problem is formulated into the game-theoretic framework by treating the event-triggering threshold and the optimal control policy as players. A cost function is defined and a value functional, which includes the delayed system output, is considered. First, by using the value functional and applying stationarity conditions using the Hamiltonian function, the output game delay algebraic Riccati equation (OGDARE) and optimal control policy are …


Signal Flow Graph Approach To Efficient Dst I-Iv Algorithms, Sirani M. Perera Jan 2016

Signal Flow Graph Approach To Efficient Dst I-Iv Algorithms, Sirani M. Perera

Publications

In this paper, fast and efficient discrete sine transformation (DST) algorithms are presented based on the factorization of sparse, scaled orthogonal, rotation, rotation-reflection, and butterfly matrices. These algorithms are completely recursive and solely based on DST I-IV. The presented algorithms have low arithmetic cost compared to the known fast DST algorithms. Furthermore, the language of signal flow graph representation of digital structures is used to describe these efficient and recursive DST algorithms having (n�1) points signal flow graph for DST-I and n points signal flow graphs for DST II-IV.


A Fast Algorithm For The Inversion Of Quasiseparable Vandermonde-Like Matrices, Sirani M. Perera, Grigory Bonik, Vadim Olshevsky Jan 2014

A Fast Algorithm For The Inversion Of Quasiseparable Vandermonde-Like Matrices, Sirani M. Perera, Grigory Bonik, Vadim Olshevsky

Publications

The results on Vandermonde-like matrices were introduced as a generalization of polynomial Vandermonde matrices, and the displacement structure of these matrices was used to derive an inversion formula. In this paper we first present a fast Gaussian elimination algorithm for the polynomial Vandermonde-like matrices. Later we use the said algorithm to derive fast inversion algorithms for quasiseparable, semiseparable and well-free Vandermonde-like matrices having O(n2) complexity. To do so we identify structures of displacement operators in terms of generators and the recurrence relations(2-term and 3-term) between the columns of the basis transformation matrices for quasiseparable, semiseparable and well-free polynomials. Finally we …


Derivation And Application Of A Conserved Orbital Energy For The Inverted Pendulum Bipedal Walking Model, Jerry E. Pratt, Sergey V. Drakunov Apr 2007

Derivation And Application Of A Conserved Orbital Energy For The Inverted Pendulum Bipedal Walking Model, Jerry E. Pratt, Sergey V. Drakunov

Publications

We present an analysis of a point mass, point foot, planar inverted pendulum model for bipedal walking. Using this model, we derive expressions for a conserved quantity, the “Orbital Energy”, given a smooth Center of Mass trajectory. Given a closed form Center of Mass Trajectory, the equation for the Orbital Energy is a closed form expression except for an integral term, which we show to be the first moment of area under the Center of Mass path. Hence, given a Center of Mass trajectory, it is straightforward and computationally simple to compute phase portraits for the system. In fact, for …