Open Access. Powered by Scholars. Published by Universities.®

Biomedical Commons

Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 31

Full-Text Articles in Biomedical

Split And Join: An Efficient Approach For Simulating Stapled Intestinal Anastomosis In Virtual Reality, Di Qi, Suvranu De Feb 2023

Split And Join: An Efficient Approach For Simulating Stapled Intestinal Anastomosis In Virtual Reality, Di Qi, Suvranu De

Engineering Faculty Articles and Research

Colorectal cancer is a life-threatening disease. It is the second leading cause of cancer-related deaths in the United States. Stapled anastomosis is a rapid treatment for colorectal cancer and other intestinal diseases and has become an integral part of routine surgical practice. However, to the best of our knowledge, there is no existing work simulating intestinal anastomosis that often involves sophisticated soft tissue manipulations such as cutting and stitching. In this paper, for the first time, we propose a novel split and join approach to simulate a side-to-side stapled intestinal anastomosis in virtual reality. We mimic the intestine model using …


A Machine Learning Framework For Identifying Molecular Biomarkers From Transcriptomic Cancer Data, Md Abdullah Al Mamun Mar 2022

A Machine Learning Framework For Identifying Molecular Biomarkers From Transcriptomic Cancer Data, Md Abdullah Al Mamun

FIU Electronic Theses and Dissertations

Cancer is a complex molecular process due to abnormal changes in the genome, such as mutation and copy number variation, and epigenetic aberrations such as dysregulations of long non-coding RNA (lncRNA). These abnormal changes are reflected in transcriptome by turning oncogenes on and tumor suppressor genes off, which are considered cancer biomarkers.

However, transcriptomic data is high dimensional, and finding the best subset of genes (features) related to causing cancer is computationally challenging and expensive. Thus, developing a feature selection framework to discover molecular biomarkers for cancer is critical.

Traditional approaches for biomarker discovery calculate the fold change for each …


Experimental And Analysis Of Electromagnetic Characterization Of Biological And Non-Biological Materials In Microwave, Millimeter-Wave, And Terahertz Frequency Bands, Nagma Vohra Jul 2021

Experimental And Analysis Of Electromagnetic Characterization Of Biological And Non-Biological Materials In Microwave, Millimeter-Wave, And Terahertz Frequency Bands, Nagma Vohra

Graduate Theses and Dissertations

The goal of this research is to characterize the electromagnetic properties of biological and non-biological materials at terahertz (THz), millimeter-wave, and microwave frequency bands. The biological specimens are measured using the THz imaging and spectroscopy system, whereas the non-biological materials are measured using the microwave and millimeter-wave free-space system. These facilities are located in the Engineering Research Center at the University of Arkansas. The THz imaging system (TPS 3000) uses a Ti-Sapphire laser directed on the photoconductive antennas to generate a THz time domain pulse. Upon using the Fourier Transform, the spectrum of the pulsed THz signal includes frequencies from …


Plasma-Treated Solutions (Pts) In Cancer Therapy, Hiromasa Tanaka, Sander Bekeschus, Dayun Yan, Masaru Hori, Michael Keidar, Mounir Laroussi Jan 2021

Plasma-Treated Solutions (Pts) In Cancer Therapy, Hiromasa Tanaka, Sander Bekeschus, Dayun Yan, Masaru Hori, Michael Keidar, Mounir Laroussi

Electrical & Computer Engineering Faculty Publications

Cold physical plasma is a partially ionized gas generating various reactive oxygen and nitrogen species (ROS/RNS) simultaneously. ROS/RNS have therapeutic effects when applied to cells and tissues either directly from the plasma or via exposure to solutions that have been treated beforehand using plasma processes. This review addresses the challenges and opportunities of plasma-treated solutions (PTSs) for cancer treatment. These PTSs include plasma-treated cell culture media in experimental research as well as clinically approved solutions such as saline and Ringer’s lactate, which, in principle, already qualify for testing in therapeutic settings. Several types of cancers were found to succumb to …


The Resistive Barrier Discharge: A Brief Review Of The Device And Its Biomedical Applications, Mounir Laroussi Jan 2021

The Resistive Barrier Discharge: A Brief Review Of The Device And Its Biomedical Applications, Mounir Laroussi

Electrical & Computer Engineering Faculty Publications

This paper reviews the principles behind the design and operation of the resistive barrier discharge, a low temperature plasma source that operates at atmospheric pressure. One of the advantages of this plasma source is that it can be operated using either DC or AC high voltages. Plasma generated by the resistive barrier discharge has been used to efficiently inactivate pathogenic microorganisms and to destroy cancer cells. These biomedical applications of low temperature plasma are of great interest because in recent times bacteria developed increased resistance to antibiotics and because present cancer therapies often are accompanied by serious side effects. Low …


Mitochondrial Utilization Of Competing Fuels Is Altered In Insulin Resistant Skeletal Muscle Of Non-Obese Rats (Goto-Kakizaki), Nicola Lai, Ciarán E. Fealy, Chinna M. Kummitha, Silvia Cabras, John P. Kirwan, Charles L. Hoppel Jan 2020

Mitochondrial Utilization Of Competing Fuels Is Altered In Insulin Resistant Skeletal Muscle Of Non-Obese Rats (Goto-Kakizaki), Nicola Lai, Ciarán E. Fealy, Chinna M. Kummitha, Silvia Cabras, John P. Kirwan, Charles L. Hoppel

Electrical & Computer Engineering Faculty Publications

Aim: Insulin-resistant skeletal muscle is characterized by metabolic inflexibility with associated alterations in substrate selection, mediated by peroxisome-proliferator activated receptor 𝜹 (PPAR𝜹). Although it is established that PPAR𝜹 contributes to the alteration of energy metabolism, it is not clear whether it plays a role in mitochondrial fuel competition. While nutrient overload may impair metabolic flexibility by fuel congestion within mitochondria, in absence of obesity defects at a mitochondrial level have not yet been excluded. We sought to determine whether reduced PPAR𝜹 content in insulin-resistant rat skeletal muscle of a non-obese rat model of T2DM (Goto-Kakizaki, GK) ameliorate the inhibitory effect …


Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi S. Patel May 2019

Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi S. Patel

University Scholar Projects

Background: Reconstruction of bone fractures and defects remains a big challenge in orthopedic surgery. While regenerative engineering has advanced the field greatly using a combination of biomaterial scaffolds and stem cells, one matter of difficulty is inducing osteogenesis in these cells. Recent works have shown electricity’s ability to promote osteogenesis in stem cell lines when seeded in bone scaffolds; however, typical electrical stimulators are either (a) externally housed and require overcomplex percutaneous wires be connected to the implanted scaffold or (b) implanted non-degradable devices which contain toxic batteries and require invasive removal surgeries.

Objective: Here, we establish a biodegradable, piezoelectric …


Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi Patel May 2019

Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi Patel

Honors Scholar Theses

Background: Reconstruction of bone fractures and defects remains a big challenge in orthopedic surgery. While regenerative engineering has advanced the field greatly using a combination of biomaterial scaffolds and stem cells, one matter of difficulty is inducing osteogenesis in these cells. Recent works have shown electricity’s ability to promote osteogenesis in stem cell lines when seeded in bone scaffolds; however, typical electrical stimulators are either (a) externally housed and require overcomplex percutaneous wires be connected to the implanted scaffold or (b) implanted non-degradable devices which contain toxic batteries and require invasive removal surgeries.

Objective: Here, we establish a biodegradable, piezoelectric …


Mechanisms And Immunogenicity Of Nspef-Induced Cell Death In B16f10 Melanoma Tumors, Alessandra Rossi, Olga N. Pakhomova, Andrei G. Pakhomov, Samantha Weygandt, Anna A. Bulysheva, Len E. Murray, Peter A. Mollica, Claudia Muratori Jan 2019

Mechanisms And Immunogenicity Of Nspef-Induced Cell Death In B16f10 Melanoma Tumors, Alessandra Rossi, Olga N. Pakhomova, Andrei G. Pakhomov, Samantha Weygandt, Anna A. Bulysheva, Len E. Murray, Peter A. Mollica, Claudia Muratori

Bioelectrics Publications

Accumulating data indicates that some cancer treatments can restore anticancer immunosurveillance through the induction of tumor immunogenic cell death (ICD). Nanosecond pulsed electric fields (nsPEF) have been shown to efficiently ablate melanoma tumors. In this study we investigated the mechanisms and immunogenicity of nsPEF-induced cell death in B16F10 melanoma tumors. Our data show that in vitro nsPEF (20-200, 200-ns pulses, 7 kV/cm, 2 Hz) caused a rapid dose-dependent cell death which was not accompanied by caspase activation or PARP cleavage. The lack of nsPEF-induced apoptosis was confirmed in vivo in B16F10 tumors. NsPEF also failed to trigger ICD-linked responses such …


Nanosecond Pulsed Electric Fields Induce Endoplasmic Reticulum Stress Accompanied By Immunogenic Cell Death In Murine Models Of Lymphoma And Colorectal Cancer, Alessandra Rossi, Olga N. Pakhomova, Peter A. Mollica, Maura Casciola, Uma Mangalanathan, Andrei G. Pakhomov, Claudia Muratori Jan 2019

Nanosecond Pulsed Electric Fields Induce Endoplasmic Reticulum Stress Accompanied By Immunogenic Cell Death In Murine Models Of Lymphoma And Colorectal Cancer, Alessandra Rossi, Olga N. Pakhomova, Peter A. Mollica, Maura Casciola, Uma Mangalanathan, Andrei G. Pakhomov, Claudia Muratori

Bioelectrics Publications

Depending on the initiating stimulus, cancer cell death can be immunogenic or non-immunogenic. Inducers of immunogenic cell death (ICD) rely on endoplasmic reticulum (ER) stress for the trafficking of danger signals such as calreticulin (CRT) and ATP. We found that nanosecond pulsed electric fields (nsPEF), an emerging new modality for tumor ablation, cause the activation of the ER-resident stress sensor PERK in both CT-26 colon carcinoma and EL-4 lymphoma cells. PERK activation correlates with sustained CRT exposure on the cell plasma membrane and apoptosis induction in both nsPEF-treated cell lines. Our results show that, in CT-26 cells, the activity of …


Il-12 Gene Electrotransfer Triggers A Change In Immune Response Within Mouse Tumors, Guilan Shi, Chelsea Edelblute, Sezgi Arpag, Cathryn Lundberg, Richard Heller Dec 2018

Il-12 Gene Electrotransfer Triggers A Change In Immune Response Within Mouse Tumors, Guilan Shi, Chelsea Edelblute, Sezgi Arpag, Cathryn Lundberg, Richard Heller

Bioelectrics Publications

Metastatic melanoma is an aggressive skin cancer with a relatively low survival rate. Immune-based therapies have shown promise in the treatment of melanoma, but overall complete response rates are still low. Previous studies have demonstrated the potential of plasmid IL-12 (pIL-12) delivered by gene electrotransfer (GET) to be an effective immunotherapy for melanoma. However, events occurring in the tumor microenvironment following delivery have not been delineated. Therefore, utilizing a B16F10 mouse melanoma model, we evaluated changes in the tumor microenvironment following delivery of pIL-12 using different GET parameters or injection of plasmid alone. The results revealed a unique immune cell …


Classification Of Intensity-Modulated Proton Therapy Plans, Louise Gabrielle Lima '19, Alice Liu '19 Nov 2018

Classification Of Intensity-Modulated Proton Therapy Plans, Louise Gabrielle Lima '19, Alice Liu '19

Student Publications & Research

Proton Radiotherapy

Proton radiotherapy is a form of radiation treatment that uses energized protons to break DNA, leading to cell death and killing cancers.


Emerging Roles Of The Membrane Potential: Action Beyond The Action Potential, Lina Abdul Kadir, Michael Stacey, Richard Barrett-Jolley Nov 2018

Emerging Roles Of The Membrane Potential: Action Beyond The Action Potential, Lina Abdul Kadir, Michael Stacey, Richard Barrett-Jolley

Bioelectrics Publications

Whilst the phenomenon of an electrical resting membrane potential (RMP) is a central tenet of biology, it is nearly always discussed as a phenomenon that facilitates the propagation of action potentials in excitable tissue, muscle, and nerve. However, as ion channel research shifts beyond these tissues, it became clear that the RMP is a feature of virtually all cells studied. The RMP is maintained by the cell's compliment of ion channels. Transcriptome sequencing is increasingly revealing that equally rich compliments of ion channels exist in both excitable and non-excitable tissue. In this review, we discuss a range of critical roles …


Upregulation Of Dna Sensors In B16.F10 Melanoma Spheroid Cells After Electrotransfer Of Pdna, Katarina Znidar, Masa Bosnjak, Tanja Jesenko, Loree C. Heller, Maja Cemazar Jan 2018

Upregulation Of Dna Sensors In B16.F10 Melanoma Spheroid Cells After Electrotransfer Of Pdna, Katarina Znidar, Masa Bosnjak, Tanja Jesenko, Loree C. Heller, Maja Cemazar

Bioelectrics Publications

Increased expression of cytosolic DNA sensors, a category of pattern recognition receptor, after control plasmid DNA electrotransfer was observed in our previous studies on B16.F10 murine melanoma cells. This expression was correlated with the upregulation of proinflammatory cytokines and chemokines and was associated with cell death. Here, we expanded our research to include the influence of features of cells in a 3-dimensional environment, which better represents the tumors’ organization in vivo. Our results show that lower number of cells were transfected in spheroids compared to 2-dimensional cultures, that growth was delayed after electroporation alone or after electrotransfer of plasmid …


Excitation And Injury Of Adult Ventricular Cardiomyocytes By Nano- To Millisecond Electric Shocks, Iurii Semenov, Sergey Grigoryev, Johanna U. Neuber, Christian W. Zemlin, Olga N. Pakhomova, Maura Casciola, Andrei G. Pakhomov Jan 2018

Excitation And Injury Of Adult Ventricular Cardiomyocytes By Nano- To Millisecond Electric Shocks, Iurii Semenov, Sergey Grigoryev, Johanna U. Neuber, Christian W. Zemlin, Olga N. Pakhomova, Maura Casciola, Andrei G. Pakhomov

Bioelectrics Publications

Intense electric shocks of nanosecond (ns) duration can become a new modality for more efficient but safer defibrillation. We extended strength-duration curves for excitation of cardiomyocytes down to 200 ns, and compared electroporative damage by proportionally more intense shocks of different duration. Enzymatically isolated murine, rabbit, and swine adult ventricular cardiomyocytes (VCM) were loaded with a Ca2+ indicator Fluo-4 or Fluo-5N and subjected to shocks of increasing amplitude until a Ca2+ transient was optically detected. Then, the voltage was increased 5-fold, and the electric cell injury was quantified by the uptake of a membrane permeability marker dye, propidium …


Mechanics Of Early Retina And Lens Development In The Embryo, Alina Oltean May 2016

Mechanics Of Early Retina And Lens Development In The Embryo, Alina Oltean

McKelvey School of Engineering Theses & Dissertations

Mechanical forces play an essential role in morphogenesis, the shaping of embryonic structures. This research focuses mainly on eye development, a problem that has been studied for decades using a variety of approaches. However, the mechanics of the early stages of eye formation remain incompletely understood.

The embryonic eyes begin as bilateral protrusions called optic vesicles (OVs) that grow outward from the anterior end of the brain tube. The optic vesicles contact and adhere to the overlying surface ectoderm (SE) via extracellular matrix (ECM). Then, both layers thicken in the region of contact to form the retinal and lens placodes, …


Induction Of Differentiation Of Dental Pulp-Derived Mesenchymal Stem Cells (Dpsc), Aubrey Young Dec 2014

Induction Of Differentiation Of Dental Pulp-Derived Mesenchymal Stem Cells (Dpsc), Aubrey Young

UNLV Theses, Dissertations, Professional Papers, and Capstones

Mesenchymal stem cells are derived from a variety of human tissues and are being bioengineered and studied for possible uses in the advancement of medicine. Recent efforts are being focused on Dental Pulp Stem Cells (DPSC's) due to the accessibility of this tissue. Many factors influence DPSC quality and quantity, including the specific methods used to isolate, collect, concentrate, and store these isolates once they are removed. Ancillary factors, such as the choice of media, the selection of early versus late passage cells, and cryopreservation techniques may also influence the differentiation potential and proliferative capacity of DPSC isolates.

The objective …


Introduction To Fourth Special Issue On Electroporation-Based Technologies And Treatments, Damijan Miklavčič, Lluis M. Mir, P. Thomas Vernier Jan 2014

Introduction To Fourth Special Issue On Electroporation-Based Technologies And Treatments, Damijan Miklavčič, Lluis M. Mir, P. Thomas Vernier

Bioelectrics Publications

This fourth special electroporation-based technologies and treatments issue of the Journal of Membrane Biology contains reports on recent developments in the field of electroporation by participants in the 7th International Workshop and Postgraduate Course on electroporation based technologies and treatments (EBTT 2013) held in Ljubljana, November 17–23, 2013. The 65 participants included faculty members, invited lecturers, special guests, and young scientists, and students from 16 countries. In addition to lectures on the fundamentals, this year’s sessions included talks on microbial inactivation by pulsed electric fields, modeling of intracellular electroporation, electroporation in food processing, and electrotransfer-facilitated DNA vaccination.


Modulation Of Cell-Matrix Interaction For Cryopreservation Of Engineered Tissue, Angela Christine Seawright Jan 2013

Modulation Of Cell-Matrix Interaction For Cryopreservation Of Engineered Tissue, Angela Christine Seawright

Open Access Theses

Long term preservation of functional engineered tissues can significantly advance tissue engineering industry and regenerative medicine. Several preservation techniques have been proposed and investigated for this purpose, and cryopreservation is a leading candidate. While tissues are cryopreserved, ice forms in both the extracellular and intracellular spaces and causes freezing-induced spatiotemporal deformation of the tissue. During this process the cells undergo dehydration by the freezing-induced osmotic pressure difference and mechanical deformation, transmitted through cell-extracellular matrix adhesions. However, the significance and interaction of these cellular level transport and mechanics processes are not well understood. Therefore, this study aims to establish mechanistic understanding …


Recruitment Of The Intracellular Ca2+ By Ultrashort Electric Stimuli: The Impact Of Pulse Duration, Iurii Semenov, Shu Xiao, Olga N. Pakhomova, Andrei G. Pakhomov Jan 2013

Recruitment Of The Intracellular Ca2+ By Ultrashort Electric Stimuli: The Impact Of Pulse Duration, Iurii Semenov, Shu Xiao, Olga N. Pakhomova, Andrei G. Pakhomov

Bioelectrics Publications

Nanosecond-duration electric stimuli are distinguished by the ability to permeabilize intracellular membranes and recruit Ca2+ from intracellular stores. We quantified this effect in non-excitable cells (CHO) using ratiometric Ca2+ imaging with Fura-2. In a Ca2+-free medium, 10-, 60-, and 300-ns stimuli evoked Ca2+ transients by mobilization of Ca2+ from the endoplasmic reticulum. With 2 mM external Ca2+, the transients included both extra- and intracellular components. The recruitment of intracellular Ca2+ increased as the stimulus duration decreased. At the threshold of 200–300 nM, the transients were amplified by calcium-induced calcium release. We …


Oxidative Effects Of Nanosecond Pulsed Electric Field Exposure In Cells And Cell-Free Media, Olga N. Pakhomova, Vera A. Khorokhorina, Angela M. Bowman, Raminta Rodaitė-Riševičienė, Gintautas Saulis, Shu Xiao, Andrei G. Pakhomov Jan 2012

Oxidative Effects Of Nanosecond Pulsed Electric Field Exposure In Cells And Cell-Free Media, Olga N. Pakhomova, Vera A. Khorokhorina, Angela M. Bowman, Raminta Rodaitė-Riševičienė, Gintautas Saulis, Shu Xiao, Andrei G. Pakhomov

Bioelectrics Publications

Nanosecond pulsed electric field (nsPEF) is a novel modality for permeabilization of membranous structures and intracellular delivery of xenobiotics. We hypothesized that oxidative effects of nsPEF could be a separate primary mechanism responsible for bioeffects. ROS production in cultured cells and media exposed to 300-ns PEF (1–13 kV/cm) was assessed by oxidation of 2′, 7′-dichlorodihydrofluoresein (H2DCF), dihidroethidium (DHE), or Amplex Red. When a suspension of H2DCF-loaded cells was subjected to nsPEF, the yield of fluorescent 2′,7′dichlorofluorescein (DCF) increased proportionally to the pulse number and cell density. DCF emission increased with time after exposure in nsPEF-sensitive Jurkat …


An Apoptosis Targeted Stimulus With Nanosecond Pulsed Electric Fields (Nspefs) In E4 Squamous Cell Carcinoma, Wei Ren, Stephen J. Beebe Jan 2011

An Apoptosis Targeted Stimulus With Nanosecond Pulsed Electric Fields (Nspefs) In E4 Squamous Cell Carcinoma, Wei Ren, Stephen J. Beebe

Bioelectrics Publications

Stimuli directed towards activation of apoptosis mechanisms are an attractive approach to eliminate evasion of apoptosis, a ubiquitous cancer hallmark. In these in vitro studies, kinetics and electric field thresholds for several apoptosis characteristics are defined in E4 squamous carcinoma cells (SCC) exposed to ten 300 ns pulses with increasing electric fields. Cell death was [95% at the highest electric field and coincident with phosphatidylserine externalization, caspase and calpain activation in the presence and absence of cytochrome c release, decreases in Bid and mitochondria membrane potential (Δψm) without apparent changes reactive oxygen species levels or in Bcl2 and Bclxl levels. …


Bcc Skin Cancer Diagnosis Based On Texture Analysis Techniques, Shao-Hui Chuang, Xiaoyan Sun, Wen-Yu Chang, Gwo-Shing Chen, Adam Huang, Jiang Li, Frederic D. Mckenzie Jan 2011

Bcc Skin Cancer Diagnosis Based On Texture Analysis Techniques, Shao-Hui Chuang, Xiaoyan Sun, Wen-Yu Chang, Gwo-Shing Chen, Adam Huang, Jiang Li, Frederic D. Mckenzie

Electrical & Computer Engineering Faculty Publications

In this paper, we present a texture analysis based method for diagnosing the Basal Cell Carcinoma (BCC) skin cancer using optical images taken from the suspicious skin regions. We first extracted the Run Length Matrix and Haralick texture features from the images and used a feature selection algorithm to identify the most effective feature set for the diagnosis. We then utilized a Multi-Layer Perceptron (MLP) classifier to classify the images to BCC or normal cases. Experiments showed that detecting BCC cancer based on optical images is feasible. The best sensitivity and specificity we achieved on our data set were 94% …


Human Osteoblast Proliferation In Culture Following A Nanosecond Pulsed Electric Field (Nspef), Leonard Joseph Carinci Jr. Apr 2010

Human Osteoblast Proliferation In Culture Following A Nanosecond Pulsed Electric Field (Nspef), Leonard Joseph Carinci Jr.

Biological Sciences Theses & Dissertations

Osteoblasts are mononucleate bone forming cells responsible for the deposition of new bone. Application of mechanical stress on bone reveals its ability to produce and release electric potentials across the cell membrane called piezoelectricity. The electric potentials produced in response to mechanical stress may have a direct correlation on osseous cells and the signaling pathways that regulate proliferation. Nanosecond pulsed electric fields (nsPEFs) are high intensity, ultrashort pulses which have the ability to maintain the integrity of the cell membrane by avoiding traditional electroporation. We delivered 8 nsPEFs (0.5 Hz) of a 25 kV/cm or 35 kV/cm electric field strength …


An Efficient Algorithm For Biomarker Identification, Jiang Li, Rick Mckenzie, Lisa Cazares, Richard Drake, John Semmens Jan 2008

An Efficient Algorithm For Biomarker Identification, Jiang Li, Rick Mckenzie, Lisa Cazares, Richard Drake, John Semmens

Electrical & Computer Engineering Faculty Publications

No abstract provided.


Self-Consistent Analyses For Potential Conduction Block In Nerves By An Ultrashort High-Intensity Electric Pulse, R. P. Joshi, A. Mishra, Q. Hu, K. H. Schoenbach, A. Pakhomov Jan 2007

Self-Consistent Analyses For Potential Conduction Block In Nerves By An Ultrashort High-Intensity Electric Pulse, R. P. Joshi, A. Mishra, Q. Hu, K. H. Schoenbach, A. Pakhomov

Bioelectrics Publications

Simulation studies are presented that probe the possibility of using high-field (>100kV ∕ cm), short-duration (∼50ns) electrical pulses for nonthermal and reversible cessation of biological electrical signaling pathways. This would have obvious applications in neurophysiology, clinical research, neuromuscular stimulation therapies, and even nonlethal bioweapons development. The concept is based on the creation of a sufficiently high density of pores on the nerve membrane by an electric pulse. This modulates membrane conductance and presents an effective "electrical short" to an incident voltage wave traveling across a nerve. Net blocking of action potential propagation can then result. A continuum approach based …


Diverse Effects Of Nanosecond Pulsed Electric Fields On Mammalian Cells, Jody Anne White Jan 2006

Diverse Effects Of Nanosecond Pulsed Electric Fields On Mammalian Cells, Jody Anne White

Theses and Dissertations in Biomedical Sciences

The continuing effort to manipulate cell-signaling pathways for therapeutic benefit has lead to the exploration of electric field effects on cells. Current electric field applications include electroporation of the plasma membrane for introduction of drugs, genes, or other macromolecules into cells. Modeling of how these pulsed electric fields affect cells depicts the cell as an excitable circuit. In this model, the electric fields, administered in short pulses to a cell, charge the plasma and internal membranes, which act as dielectric layers, and between these the cytoplasm acts as a conductive medium. The pulse lengths of this treatment are traditionally in …


Simulations Of Nanopore Formation And Phosphatidylserine Externalization In Lipid Membranes Subjected To A High-Intensity, Ultrashort Electric Pulse, Q. Hu, R. P. Joshi, K. H. Schoenbach Jan 2005

Simulations Of Nanopore Formation And Phosphatidylserine Externalization In Lipid Membranes Subjected To A High-Intensity, Ultrashort Electric Pulse, Q. Hu, R. P. Joshi, K. H. Schoenbach

Bioelectrics Publications

A combined MD simulator and time dependent Laplace solver are used to analyze the electrically driven phosphatidylserine externalization process in cells. Time dependent details of nanopore formation at cell membranes in response to a high-intensity (100kV∕cm), ultrashort (10ns) electric pulse are also probed. Our results show that nanosized pores could typically be formed within about 5ns. These predictions are in very good agreement with recent experimental data. It is also demonstrated that defect formation and PS externalization in membranes should begin on the anode side. Finally, the simulations confirm that PS externalization is a nanopore facilitated event, rather than the …


Selective Field Effects On Intracellular Vacuoles And Vesicle Membranes With Nanosecond Electric Pulses, Ephrem Tekle, Hammou Oubrahim, Sergey M. Dzekunov, Juergen F. Kolb, Karl H. Schoenbach Jan 2005

Selective Field Effects On Intracellular Vacuoles And Vesicle Membranes With Nanosecond Electric Pulses, Ephrem Tekle, Hammou Oubrahim, Sergey M. Dzekunov, Juergen F. Kolb, Karl H. Schoenbach

Bioelectrics Publications

Electric pulses across intact vesicles and cells can lead to transient increase in permeability of their membranes. We studied the integrity of these membranes in response to external electric pulses of high amplitude and submicrosecond duration with a primary aim of achieving selective permeabilization. These effects were examined in two separate model systems comprising of 1), a mixed population of 1,2-di-oleoyl-sn-glycero-3-phosphocholine phospholipid vesicles and in 2), single COS-7 cells, in which large endosomal membrane vacuoles were induced by stimulated endocytosis. It has been shown that large and rapidly varying external electric fields, with pulses shorter than the charging time of …


Characterization Of The Biological Activities Of Recombinant Fusion Protein Green Fluorescent Protein/Human Zona Pellucida Protein 3 (Gfp/Hzp3), Zhiyong Lin Jan 2001

Characterization Of The Biological Activities Of Recombinant Fusion Protein Green Fluorescent Protein/Human Zona Pellucida Protein 3 (Gfp/Hzp3), Zhiyong Lin

Theses and Dissertations in Biomedical Sciences

Despite numerous reports indicating the successful production of bioactive recombinant ZP3, no report has shown the rhZP3 having direct binding activity with human sperm. Recombinant ZP3 generated from our previous study displayed binding activity with human sperm through indirect evidence from hemizona assay (HZA).

This present study focused on the production of recombinant ZP3 with direct binding activity with human sperm. Through the application of a pEGFP expression vector, fusion protein GFP/ZP3 was successfully generated and expressed. The expression of GFP/ZP3 was evidenced by RT-PCR and western blot. The fusion protein was partially purified by Ni-NTA affinity column from cell …