Open Access. Powered by Scholars. Published by Universities.®

Robotics Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomedical Devices and Instrumentation

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 23 of 23

Full-Text Articles in Robotics

The Development And Testing Of A Gyroscope-Based Neck Strengthening Rehabilitation Device, Nicole D. Devos Feb 2024

The Development And Testing Of A Gyroscope-Based Neck Strengthening Rehabilitation Device, Nicole D. Devos

Electronic Thesis and Dissertation Repository

Neck pain can be debilitating, and is experienced by the majority of people at some point over the course of their life. Resistance training has been shown to have significant improvement in pain or disability for patients. There are few options available for telerehabilitation, and the use of gyroscope stabilizers is proposed for this use. A biomechanics model of a head--neck--gyroscope system was created. In order to also model the dynamics of such a system, this work proposes a blended method using the Denavit--Hartenberg (DH) convention, popular in the field of robotics, with the Lagrangian mechanics approach to analyze an …


Evaluating Eeg–Emg Fusion-Based Classification As A Method For Improving Control Of Wearable Robotic Devices For Upper-Limb Rehabilitation, Jacob G. Tryon Aug 2023

Evaluating Eeg–Emg Fusion-Based Classification As A Method For Improving Control Of Wearable Robotic Devices For Upper-Limb Rehabilitation, Jacob G. Tryon

Electronic Thesis and Dissertation Repository

Musculoskeletal disorders are the biggest cause of disability worldwide, and wearable mechatronic rehabilitation devices have been proposed for treatment. However, before widespread adoption, improvements in user control and system adaptability are required. User intention should be detected intuitively, and user-induced changes in system dynamics should be unobtrusively identified and corrected. Developments often focus on model-dependent nonlinear control theory, which is challenging to implement for wearable devices.

One alternative is to incorporate bioelectrical signal-based machine learning into the system, allowing for simpler controller designs to be augmented by supplemental brain (electroencephalography/EEG) and muscle (electromyography/EMG) information. To extract user intention better, sensor …


Live Audiovisual Remote Assistance System (Laras) For Person With Visual Impairments, Zachary Frey, Nghia Vo, Varaha Maithreya, Tais Mota, Urvish Trivedi, Redwan Alqasemi, Rajiv Dubey May 2023

Live Audiovisual Remote Assistance System (Laras) For Person With Visual Impairments, Zachary Frey, Nghia Vo, Varaha Maithreya, Tais Mota, Urvish Trivedi, Redwan Alqasemi, Rajiv Dubey

36th Florida Conference on Recent Advances in Robotics

According to "The World Report on Vision" by World Health Organization (WHO) [1], there are more than 2.2 billion people who have near or distant vision Impairments, out of which 36 million people are classified as entirely blind. This report also emphasizes the importance of social and communal support in enabling individuals with vision impairments to integrate into society and reach their full potential. While performing daily activities and navigating the environment, people with visual impairments (PVIs) often require direct or synchronous assistance [2]. Consequently, there is a growing need for automated solutions to assist in this regard. However, existing …


Gesture-Based American Sign Language (Asl) Translation System, Kayleigh Moore, Stefano Pecile, Mahdi Yazdanpour Jan 2023

Gesture-Based American Sign Language (Asl) Translation System, Kayleigh Moore, Stefano Pecile, Mahdi Yazdanpour

Posters-at-the-Capitol

According to the World Health Organization (WHO), over 5% of the world's population experiences severe hearing loss. Approximately 9 million people in the U.S. are either functionally deaf or have mild-to-severe hearing loss. In this research, we designed and implemented a translation interface which turns American Sign Language (ASL) gestures captured from a pair of soft robotic gloves into text and speech instantaneously.

We used a combination of flex sensors, tactile sensors, and accelerometers to recognize hand gestures and to record hand and fingers positions, movements, and orientations. The digitized captured gestures were then sent to our proposed translation interface …


Design And Fabrication Of A Force-Displacement Control Mechanism For Bone-Surgical Tool Testing, Kenneth Nwagu Jan 2023

Design And Fabrication Of A Force-Displacement Control Mechanism For Bone-Surgical Tool Testing, Kenneth Nwagu

Electronic Theses and Dissertations

This project focuses on the design and fabrication of an experimental setup for orthopedic-tool testing, tailored for a surgical instrumentation company. The multifaceted project encompasses a literature review, conceptual design, prototyping, and rigorous testing, resulting in a versatile control system capable of assessing various orthopedic tools, including bone drills, saws, burrs, and power handpieces.

Orthopedic surgical procedures (which include cutting and/or drilling into bone) often need to be performed on bones for faster recovery. The drilling and cutting process can cause an increase in temperature at the cutting site which can cause bone necrosis. The tools also need to be …


Development Of A Wearable Haptic Feedback Device For Upper Limb Prosthetics Through Sensory Substitution, Marco B.S. Gallone May 2021

Development Of A Wearable Haptic Feedback Device For Upper Limb Prosthetics Through Sensory Substitution, Marco B.S. Gallone

Electronic Thesis and Dissertation Repository

Haptics can enable a direct communication pipeline between the artificial limb and the brain; adding haptic sensory feedback for prosthesis wearers is believed to improve operation without drawing too much of the user's attention. Through neuroplasticity, the brain can become more cognizant of the information delivered through the skin and may eventually interpret it as inherently as other natural senses. In this thesis, a wearable haptic feedback device (WHFD) is developed to communicate prosthesis sensory information. A 14-week, 6-stage, between subjects study was created to investigate the learning trajectory as participants were stimulated with haptic patterns conveying joint proprioception. 37 …


A Wearable Mechatronic Device For Hand Tremor Monitoring And Suppression: Development And Evaluation, Yue Zhou Dec 2019

A Wearable Mechatronic Device For Hand Tremor Monitoring And Suppression: Development And Evaluation, Yue Zhou

Electronic Thesis and Dissertation Repository

Tremor, one of the most disabling symptoms of Parkinson's disease (PD), significantly affects the quality of life of the individuals who suffer from it. These people live with difficulties with fine motor tasks, such as eating and writing, and suffer from social embarrassment. Traditional medicines are often ineffective, and surgery is highly invasive and risky. The emergence of wearable technology facilitates an externally worn mechatronic tremor suppression device as a potential alternative approach for tremor management. However, no device has been developed for the suppression of finger tremor that has been validated on a human.

It has been reported in …


Improving 3d Printed Prosthetics With Sensors And Motors, Rachel Zarin Jul 2019

Improving 3d Printed Prosthetics With Sensors And Motors, Rachel Zarin

Honors Projects

A 3D printed hand and arm prosthetic was created from the idea of adding bionic elements while keeping the cost low. It was designed based on existing models, desired functions, and materials available. A tilt sensor keeps the hand level, two motors move the wrist in two different directions, a limit switch signals the fingers to open and close, and another motor helps open and close the fingers. All sensors and motors were built on a circuit board, programmed using an Arduino, and powered by a battery. Other supporting materials include metal brackets, screws, guitar strings, elastic bands, small clamps, …


Estimation Of Multi-Directional Ankle Impedance As A Function Of Lower Extremity Muscle Activation, Lauren Knop Jan 2019

Estimation Of Multi-Directional Ankle Impedance As A Function Of Lower Extremity Muscle Activation, Lauren Knop

Dissertations, Master's Theses and Master's Reports

The purpose of this research is to investigate the relationship between the mechanical impedance of the human ankle and the corresponding lower extremity muscle activity. Three experimental studies were performed to measure the ankle impedance about multiple degrees of freedom (DOF), while the ankle was subjected to different loading conditions and different levels of muscle activity. The first study determined the non-loaded ankle impedance in the sagittal, frontal, and transverse anatomical planes while the ankle was suspended above the ground. The subjects actively co-contracted their agonist and antagonistic muscles to various levels, measured using electromyography (EMG). An Artificial Neural Network …


Dynamic Model For Simulating Motion Of The Right Ventricle, Brian Michael Larsen, Sam Koopman Porter, John Francis D'Ambrosio Jun 2018

Dynamic Model For Simulating Motion Of The Right Ventricle, Brian Michael Larsen, Sam Koopman Porter, John Francis D'Ambrosio

Mechanical Engineering

This report documents all the research, ideation, and mockups used to determine right ventricle motion and develop a system capable of reproducing that motion on a tissue sample. The model is intended for evaluating anchoring systems being developed by Edwards Lifesciences for use with tricuspid valve therapies. Several design solutions were considered for the primary functions of recreating motion of the right ventricle and attaching tissue to the device. From these ideas a primary means of producing motion and attaching tissue was selected. These ideas were then developed over the course of a school year to become the final system …


Design Of A Flexible Control Platform And Miniature In Vivo Robots For Laparo-Endoscopic Single-Site Surgeries, Lou P. Cubrich Dec 2016

Design Of A Flexible Control Platform And Miniature In Vivo Robots For Laparo-Endoscopic Single-Site Surgeries, Lou P. Cubrich

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Minimally-invasive laparoscopic procedures have proven efficacy for a wide range of surgical procedures as well as benefits such as reducing scarring, infection, recovery time, and post-operative pain. While the procedures have many advantages, there are significant shortcomings such as limited instrument motion and reduced dexterity. In recent years, robotic surgical technology has overcome some of these limitations and has become an effective tool for many types of surgeries. These robotic platforms typically have an increased workspace, greater dexterity, improved ergonomics, and finer control than traditional laparoscopic methods. This thesis presents the designs of both a four degree-of-freedom (DOF) and 5-DOF …


Psychophysiological Analysis Of A Pedagogical Agent And Robotic Peer For Individuals With Autism Spectrum Disorders., Mohammad Nasser Saadatzi Dec 2016

Psychophysiological Analysis Of A Pedagogical Agent And Robotic Peer For Individuals With Autism Spectrum Disorders., Mohammad Nasser Saadatzi

Electronic Theses and Dissertations

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by ongoing problems in social interaction and communication, and engagement in repetitive behaviors. According to Centers for Disease Control and Prevention, an estimated 1 in 68 children in the United States has ASD. Mounting evidence shows that many of these individuals display an interest in social interaction with computers and robots and, in general, feel comfortable spending time in such environments. It is known that the subtlety and unpredictability of people’s social behavior are intimidating and confusing for many individuals with ASD. Computerized learning environments and robots, however, prepare a predictable, …


A Haptic Surface Robot Interface For Large-Format Touchscreen Displays, Mark Price Jul 2016

A Haptic Surface Robot Interface For Large-Format Touchscreen Displays, Mark Price

Masters Theses

This thesis presents the design for a novel haptic interface for large-format touchscreens. Techniques such as electrovibration, ultrasonic vibration, and external braked devices have been developed by other researchers to deliver haptic feedback to touchscreen users. However, these methods do not address the need for spatial constraints that only restrict user motion in the direction of the constraint. This technology gap contributes to the lack of haptic technology available for touchscreen-based upper-limb rehabilitation, despite the prevalent use of haptics in other forms of robotic rehabilitation. The goal of this thesis is to display kinesthetic haptic constraints to the touchscreen user …


A Magnetic Actuated Fully Insertable Robotic Camera System For Single Incision Laparoscopic Surgery, Xiaolong Liu Aug 2015

A Magnetic Actuated Fully Insertable Robotic Camera System For Single Incision Laparoscopic Surgery, Xiaolong Liu

Doctoral Dissertations

Minimally Invasive Surgery (MIS) is a common surgical procedure which makes tiny incisions in the patients anatomy, inserting surgical instruments and using laparoscopic cameras to guide the procedure. Compared with traditional open surgery, MIS allows surgeons to perform complex surgeries with reduced trauma to the muscles and soft tissues, less intraoperative hemorrhaging and postoperative pain, and faster recovery time. Surgeons rely heavily on laparoscopic cameras for hand-eye coordination and control during a procedure. However, the use of a standard laparoscopic camera, achieved by pushing long sticks into a dedicated small opening, involves multiple incisions for the surgical instruments. Recently, single …


A Continous Rotary Actuation Mechanism For A Powered Hip Exoskeleton, Matthew C. Ryder Jul 2015

A Continous Rotary Actuation Mechanism For A Powered Hip Exoskeleton, Matthew C. Ryder

Masters Theses

This thesis presents a new mechanical design for an exoskeleton actuator to power the sagittal plane motion in the human hip. The device uses a DC motor to drive a Scotch yoke mechanism and series elasticity to take advantage of the cyclic nature of human gait and to reduce the maximum power and control requirements of the exoskeleton. The Scotch yoke actuator creates a position-dependent transmission that varies between 4:1 and infinity, with the peak transmission ratio aligned to the peak torque periods of the human gait cycle. Simulation results show that both the peak and average motor torque can …


Design Of A Haptic Interface For Medical Applications Using Magneto-Rheological Fluid Based Actuators, Nima Najmaei Dec 2014

Design Of A Haptic Interface For Medical Applications Using Magneto-Rheological Fluid Based Actuators, Nima Najmaei

Electronic Thesis and Dissertation Repository

This thesis reports on the design, construction, and evaluation of a prototype two degrees-of-freedom (DOF) haptic interface, which takes advantage of Magneto-Rheological Fluid (MRF) based clutches for actuation. Haptic information provides important cues in teleoperated systems and enables the user to feel the interaction with a remote or virtual environment during teleoperation. The two main objectives in designing a haptic interface are stability and transparency. Indeed, deficiencies in these factors in haptics-enabled telerobotic systems has the introduction of haptics in medical environments where safety and reliability are prime considerations. An actuator with poor dynamics, high inertia, large size, and heavy …


Designing A Biomimetic Testing Platform For Actuators In A Series-Elastic Co-Contraction System, Ryan Tyler Schroeder Dec 2014

Designing A Biomimetic Testing Platform For Actuators In A Series-Elastic Co-Contraction System, Ryan Tyler Schroeder

UNLV Theses, Dissertations, Professional Papers, and Capstones

Actuators determine the performance of robotic systems at the most intimate of levels. As a result, much work has been done to assess the performance of different actuator systems. However, biomimetics has not previously been utilized as a pretext for tuning a series elastic actuator system with the purpose of designing an empirical testing platform. Thus, an artificial muscle tendon system has been developed in order to assess the performance of two distinct actuator types: (1) direct current electromagnetic motors and (2) ultrasonic rotary piezoelectric motors. Because the design of the system takes advantage of biomimetic operating principles such as …


Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena Jul 2013

Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena

Abhijit Saxena

In microsurgery, the human hand imposes certain limitations in accurately positioning the tip of a device such as scalpel. Any errors in the motion of the hand make microsurgical procedures difficult and involuntary motions such as hand tremors can make some procedures significantly difficult to perform. This is particularly true in the case of vitreoretinal microsurgery. The most familiar source of involuntary motion is physiological tremor. Real-time compensation of tremor is, therefore, necessary to assist surgeons to precisely position and manipulate the tool-tip to accurately perform a microsurgery. In this thesis, a novel handheld device (AID) is described for compensation …


Activity Intent Recognition Of The Torso Based On Surface Electromyography And Inertial Measurement Units, Zhe Zhang Jan 2013

Activity Intent Recognition Of The Torso Based On Surface Electromyography And Inertial Measurement Units, Zhe Zhang

Masters Theses 1911 - February 2014

This thesis presents an activity mode intent recognition approach for safe, robust and reliable control of powered backbone exoskeleton. The thesis presents the background and a concept for a powered backbone exoskeleton that would work in parallel with a user. The necessary prerequisites for the thesis are presented, including the collection and processing of surface electromyography signals and inertial sensor data to recognize the user’s activity. The development of activity mode intent recognizer was described based on decision tree classification in order to leverage its computational efficiency. The intent recognizer is a high-level supervisory controller that belongs to a three-level …


Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena Oct 2012

Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena

Electronic Thesis and Dissertation Repository

In microsurgery, the human hand imposes certain limitations in accurately positioning the tip of a device such as scalpel. Any errors in the motion of the hand make microsurgical procedures difficult and involuntary motions such as hand tremors can make some procedures significantly difficult to perform. This is particularly true in the case of vitreoretinal microsurgery. The most familiar source of involuntary motion is physiological tremor. Real-time compensation of tremor is, therefore, necessary to assist surgeons to precisely position and manipulate the tool-tip to accurately perform a microsurgery. In this thesis, a novel handheld device (AID) is described for compensation …


Vision-Based Robot Control In The Context Of Human-Machine Interactions, Andrzej Nycz Aug 2012

Vision-Based Robot Control In The Context Of Human-Machine Interactions, Andrzej Nycz

Doctoral Dissertations

This research has explored motion control based on visual servoing – in the context of complex human-machine interactions and operations in realistic environments. Two classes of intelligent robotic systems were studied in this context: operator assistance with a high dexterity telerobotic manipulator performing remote tooling-centric tasks, and a bio-robot for X-ray imaging of lower extremity human skeletal joints during natural walking. The combination of human-machine interactions and practical application scenarios has led to the following fundamental contributions: 1) exploration and evaluation of a new concept of acquiring fluoroscope images of musculoskeletal features of interest during natural human motion, 2) creation …


Polygrasp: Reach; Myoelectric Prosthetic Hand Iteration, Devon Patrick Augustus, Mighells Blaed Deuel, Ian Noel Fraser, Nicholas Philip Moesser Jun 2012

Polygrasp: Reach; Myoelectric Prosthetic Hand Iteration, Devon Patrick Augustus, Mighells Blaed Deuel, Ian Noel Fraser, Nicholas Philip Moesser

Mechanical Engineering

Amputations are a common occurrence in soldiers returning home who have suffered the effects of IED and munitions explosions. For upper limb amputees, trans-radial amputations are the most common. Traditional hook devices do not offer an adequate level of normalcy for users, prompting the use of myoelectric devices. While current myoelectric devices do offer a more natural experience, they come with a host of other problems that makes their adoption by service personnel not desirable or not permitted by the VA. PolyGrasp Reach seeks to reduce weight and cost and improve performance. This addresses several of the issues with devices …


Towards Supervised Autonomous Task Completion Using An In Vivo Surgical Robot, Jason J. Dumpert Oct 2009

Towards Supervised Autonomous Task Completion Using An In Vivo Surgical Robot, Jason J. Dumpert

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Laparoscopy is a minimally invasive alternative to traditional abdominal surgery. Unlike traditional surgery, a laparoscopic procedure can be completed using small incisions. The use of these small incision results in reduced pain to the patient, shorter recovery times, and less trauma to skin, muscle and other tissues. However, these benefits to the patient are offset by the increased difficulty to the surgeon performing the procedure. These difficulties include reduced dexterity, reduced perception, and longer procedure times. The use of small in vivo robotic devices in minimally invasive surgery is one possible solution to these problems. The movement of these devices …