Open Access. Powered by Scholars. Published by Universities.®

Structural Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Structural Engineering

Seismic Design Coefficients For Speedcore Or Composite Plate Shear Walls - Concrete Filled (C-Psw/Cf), Shubham Agrawal, Morgan Broberg, Amit H. Varma Aug 2020

Seismic Design Coefficients For Speedcore Or Composite Plate Shear Walls - Concrete Filled (C-Psw/Cf), Shubham Agrawal, Morgan Broberg, Amit H. Varma

Bowen Laboratory Research Reports

This report summarizes the results from FEMA P695 analytical studies conducted to verify the seismic design factors for composite plate shear walls – concrete filled (C-PSW/CF), also referred to as Speedcore. ASCE 7-16 provides the seismic design factors, which include the seismic response modification factor, R, deflection amplification factor, Cd, and overstrength factor, Ωo, for various approved seismic systems. C-PSW/CFs are assigned a response modification factor of 6.5, a deflection amplification factor of 5.5, and an overstrength factor of 2.5 for C-PSW/CFs. These seismic design factors were selected based on the seismic performance of similar structural …


Post-Earthquake Fire Assessment Of Steel Buildings, Yi Li, Rachel Chicchi, Amit H. Varma Aug 2017

Post-Earthquake Fire Assessment Of Steel Buildings, Yi Li, Rachel Chicchi, Amit H. Varma

The Summer Undergraduate Research Fellowship (SURF) Symposium

Resilience of structural systems after hazardous events is a crucial concern of building design. An abundance of research has focused on hazards such as seismic and fire separately. This project conducted a multi-hazard study on steel buildings considering both seismic and fire damage. A literature review of the behavior of steel-framed buildings due to fires after earthquakes, known as post-earthquake fires (PEF), is offered. The new PEF methodology, delivered in this study, starts with creating a three dimensional (3D) model of the examined steel building using the finite element method software, ABAQUS. Next, varying intensities of seismic and fire hazards …


Compression Testing And Failure Modes Of Steel-Concrete Composite (Sc) Structures For Nuclear Containment, Patrick Michael Wanamaker, Amit H. Varma Oct 2013

Compression Testing And Failure Modes Of Steel-Concrete Composite (Sc) Structures For Nuclear Containment, Patrick Michael Wanamaker, Amit H. Varma

The Summer Undergraduate Research Fellowship (SURF) Symposium

Although being able to provide much cleaner power than burning coal and other fossil fuels, nuclear power plants are still a tough sell to the general public due to their history of being spontaneously dangerous. The containment structures surrounding these nuclear plants, however, can play a huge role in reducing the risks associated with them. Relatively new designs for these containment assemblies, known as SC (steel-concrete composite) structures, aim to increase the strength and durability of the containment facilities while keeping costs down. By varying the spacing between shear studs, the ratio of concrete to steel, and the ratio of …