Open Access. Powered by Scholars. Published by Universities.®

Polymer Science Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Polymer Science

Extraction Of Micro- And Nano-Plastic Particles From Water Using Hydrophobic Natural Deep Eutectic Solvents, Jameson R. Hunter Jan 2021

Extraction Of Micro- And Nano-Plastic Particles From Water Using Hydrophobic Natural Deep Eutectic Solvents, Jameson R. Hunter

Theses and Dissertations--Biosystems and Agricultural Engineering

The production of plastic and the amount of waste plastic that enters the environment increases every year. Synthetic polymers will gradually break down into particles on the micro- and nano-scale. The micro- and nano-plastics pose a significant ecological harm by transporting toxic chemicals and causing inflammation and cellular damage when ingested. Two common plastics are polyethylene terephthalate (PET) and Polystyrene (PS), and a newer bioplastic polylactic acid (PLA) that has become a popular alternative. Deep eutectic solvents are a recently discovered solvent composed of a hydrogen bond donor and hydrogen bond acceptor and have been proposed as a cheaper alternative …


Synthesis, Functionalization, And Application Of Nanofiltration And Composite Membranes For Selective Separations, Andrew Steven Colburn Jan 2019

Synthesis, Functionalization, And Application Of Nanofiltration And Composite Membranes For Selective Separations, Andrew Steven Colburn

Theses and Dissertations--Chemical and Materials Engineering

Future nanofiltration (NF) membranes used for selective separations of ions and small organic molecules must maintain performance in environments where high concentrations of total dissolved solvents or foulants are present. These challenges can be addressed through the development of composite membranes, as well as the engineering of enhanced surface properties and operating conditions for existing commercial membranes.

In this work, ion transport through commercial thin film composite (TFC) polyamide NF membranes were studied in both lab-prepared salt solutions and industrial wastewater. The dependence of several variables on ion rejection was investigated, including ion radius, ion charge, ionic strength, and temperature. …


Synthesis, Characterization And Applications Of Reduced Graphene Oxide And Composite Membranes For Selective Separations And Removal Of Organic Contaminants, Ashish Aher Jan 2019

Synthesis, Characterization And Applications Of Reduced Graphene Oxide And Composite Membranes For Selective Separations And Removal Of Organic Contaminants, Ashish Aher

Theses and Dissertations--Chemical and Materials Engineering

Among the next generation materials being investigated for membrane development, partially reduced Graphene Oxide (rGO) has received increasing attention from the membrane community. rGO-based nanofiltration membranes have shown promising results in applications such as partial desalination, organic contaminant removal, gas-phase separations, and separations from solvent media. rGO offers a unique platform compared to common polymeric membranes since it can be used for separation applications in both aqueous and organic solvent media. An rGO-based platform could also be utilized to synthesize reactive membranes, giving rGO membranes the additional capability of reactively removing organic contaminants. This research focuses on the synthesis of …


Generation Of Multicomponent Polymer Blend Microparticles Using Droplet Evaporation Technique And Modeling Evaporation Of Binary Droplet Containing Non-Volatile Solute, Venkat N. Rajagopalan Jan 2014

Generation Of Multicomponent Polymer Blend Microparticles Using Droplet Evaporation Technique And Modeling Evaporation Of Binary Droplet Containing Non-Volatile Solute, Venkat N. Rajagopalan

Theses and Dissertations--Chemical and Materials Engineering

Recently, considerable attention has been focused on the generation of nano- and micrometer scale multicomponent polymer particles with specifically tailored mechanical, electrical and optical properties. As only a few polymer-polymer pairs are miscible, the set of multicomponent polymer systems achievable by conventional methods, such as melt blending, is severely limited in property ranges. Therefore, researchers have been evaluating synthesis methods that can arbitrarily blend immiscible solvent pairs, thus expanding the range of properties that are practical. The generation of blended microparticles by evaporating a co-solvent from aerosol droplets containing two dissolved immiscible polymers in solution seems likely to exhibit a …