Open Access. Powered by Scholars. Published by Universities.®

Other Chemical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Other Chemical Engineering

Effect Of Aerogel On The Thermal Performance Of Corrugated Composite Sandwich Structures, Jacob Dillon Chess Dec 2018

Effect Of Aerogel On The Thermal Performance Of Corrugated Composite Sandwich Structures, Jacob Dillon Chess

Master's Theses

Current insulation solutions across multiple industries, especially the commercial sector, can be bulky and ineffective when considering their volume. Aerogels are excellent insulators, exhibiting low thermal conductivities and low densities with a porosity of around 95%. Such characteristics make aerogels effective in decreasing conductive heat transfer within a solid. These requirements are crucial for aerospace and spaceflight applications, where sensitive components exist among extreme temperature environments. When implemented into insulation applications, aerogel can perform better than existing technology while using less material, which limits the amount of volume allocated for insulation. The application of these materials into composites can result …


Numerical Investigations Of Bubble Column Equipped With Vertical Internals In Different Arrangements, Tuntun Gaurav Aug 2018

Numerical Investigations Of Bubble Column Equipped With Vertical Internals In Different Arrangements, Tuntun Gaurav

Electronic Thesis and Dissertation Repository

Bubble columns are multiphase contactors with wide applications in industrial processes. Often they are equipped with longitudinal tube bundles to facilitate heat exchange. Studying effects of these internals on column hydrodynamics is vital for the design of these internals. Computational Fluid Dynamic (CFD) simulations provide an understanding of the complex two-phase flow enabling the study of the effects of the internals on the column hydrodynamics. In the present work, an Eulerian-Eulerian based two-fluid model (TFM) coupled with a population balance model (PBM) is used to simulate the gas-liquid two-phase flows in bubble columns. The models studied were validated using experimental …


Comparing Stenotic Blood Flow In Three- And Two-Dimensional Arterial Renderings Using Computational Fluid Dynamics And Multiphase Mean Age Theory., Jacob S. Garza May 2018

Comparing Stenotic Blood Flow In Three- And Two-Dimensional Arterial Renderings Using Computational Fluid Dynamics And Multiphase Mean Age Theory., Jacob S. Garza

Electronic Theses and Dissertations

Over one million invasive coronary angiography procedures are performed annually in patients who experience chest pain or are known to have coronary artery disease. The procedure is carried out to ascertain the degree of arterial blockage (stenosis) that hinders blood flow to the heart. A cardiologist performing the procedure determines the physiological degree of a stenosis by either visual estimation, which is routine practice, or by invasively measuring fractional flow reserve (FFR), which is the current gold standard that has been demonstrated to improve patient outcomes and temper the cost of healthcare. Nevertheless, FFR is performed in only 10–20% of …


A Comparison Of Mean Age Theory And Residence Time Distributions In Mixed Systems., Nolan Theaker Dec 2017

A Comparison Of Mean Age Theory And Residence Time Distributions In Mixed Systems., Nolan Theaker

Electronic Theses and Dissertations

A comparison between mean age theory and conventional residence time distributions over a range of quantified mixing levels was conducted using computational fluid dynamics (CFD). The system was a stirred tubular reactor. The model was validated by comparing computationally derived RTD curves with experimentally obtained RTD curves, with quantified differences less than 3%. Mixing was quantified using the Tanks-in-Series model. Mixing levels were set by varying flow rate and impeller rpm. Mean age distributions at the outlet, where experimental RTD’s were measured, were very narrow for all levels of mixing studied. RTD’s showed expected characteristics; a wider distribution and long …


Heat Transfer Mechanisms In Water-Based Nanofluids., Masoudeh Ahmadi Dec 2015

Heat Transfer Mechanisms In Water-Based Nanofluids., Masoudeh Ahmadi

Electronic Theses and Dissertations

Nanofluids are a class of heat transport fluids created by suspending nano-scaled metallic or nonmetallic particles into a base fluid. Some experimental investigations have revealed that the nanofluids have remarkably higher thermal conductivities than those of conventional pure fluids and are more suited for practical application than the existing techniques of heat transfer enhancement using millimeter and/or micrometer-sized particles in fluids. Use of nanoparticles reduces pressure drop, system wear, and overall mass of the system leading to a reduction in costs over existing enhancement techniques. In this work, the heat transfer coefficient is determined experimentally using copper oxide (CuO) based …