Open Access. Powered by Scholars. Published by Universities.®

Other Chemical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Other Chemical Engineering

Chameleon Coatings: Adaptive Surfaces To Reduce Friction And Wear In Extreme Environments, Christopher Muratore, Andrey A. Voevodin Aug 2009

Chameleon Coatings: Adaptive Surfaces To Reduce Friction And Wear In Extreme Environments, Christopher Muratore, Andrey A. Voevodin

Chemical and Materials Engineering Faculty Publications

Adaptive nanocomposite coating materials that automatically and reversibly adjust their surface composition and morphology via multiple mechanisms are a promising development for the reduction of friction and wear over broad ranges of ambient conditions encountered in aerospace applications, such as cycling of temperature and atmospheric composition. Materials selection for these composites is based on extensive study of interactions occurring between solid lubricants and their surroundings, especially with novel in situ surface characterization techniques used to identify adaptive behavior on size scales ranging from 10−10 to 10−4 m. Recent insights on operative solid-lubricant mechanisms and their dependency upon the ambient environment …


Drag Reduction In Turbulent Flows Over Micropatterned Superhydrophobic Surfaces, Robert J. Daniello Jan 2009

Drag Reduction In Turbulent Flows Over Micropatterned Superhydrophobic Surfaces, Robert J. Daniello

Masters Theses 1911 - February 2014

Periodic, micropatterned superhydrophobic surfaces, previously noted for their ability to provide drag reduction in the laminar flow regime, have been demonstrated capable of reducing drag in the turbulent flow regime as well. Superhydrophobic surfaces contain micro or nanoscale hydrophobic features which can support a shear-free air-water interface between peaks in the surface topology. Particle image velocimetry and pressure drop measurements were used to observe significant slip velocities, shear stress, and pressure drop reductions corresponding to skin friction drag reductions approaching 50%. At a given Reynolds number, drag reduction was found to increase with increasing feature size and spacing, as in …


An Infrared Imaging Method For High-Throughput Combinatorial Investigation Of Hydrogenation-Dehydrogenation And New Phase Formation Of Thin Films, H. Oguchi, Jason R. Hattrick-Simpers, I. Takeuchi, E. J. Heilweil, L. A. Bendersky Jan 2009

An Infrared Imaging Method For High-Throughput Combinatorial Investigation Of Hydrogenation-Dehydrogenation And New Phase Formation Of Thin Films, H. Oguchi, Jason R. Hattrick-Simpers, I. Takeuchi, E. J. Heilweil, L. A. Bendersky

Faculty Publications

We have developed an infrared imaging setup enabling in situ infrared images to be acquired, and expanded on capabilities of an infrared imaging as a high-throughput screening technique, determination of a critical thickness of a Pd capping layer which significantly blocks infrared emission from below, enhancement of sensitivity to hydrogenation and dehydrogenation by normalizing raw infrared intensity of a Mg thin film to an inert reference, rapid and systematic screening of hydrogenation and dehydrogenation properties of a Mg–Ni composition spread covered by a thickness gradient Pd capping layer, and detection of formation of a Mg2Si phase in a …


The Effect Of Copt Crystallinity And Grain Texturing On Properties Of Exchange-Coupled Fe/Copt Systems, H. Oguchi, A. Zambano, M. Yu, Jason R. Hattrick-Simpers, D. Banerjee, Y. Liu, Z. L. Wang, J. P. Liu, S. E. Lofland, D. Josell, I. Takeuchi Jan 2009

The Effect Of Copt Crystallinity And Grain Texturing On Properties Of Exchange-Coupled Fe/Copt Systems, H. Oguchi, A. Zambano, M. Yu, Jason R. Hattrick-Simpers, D. Banerjee, Y. Liu, Z. L. Wang, J. P. Liu, S. E. Lofland, D. Josell, I. Takeuchi

Faculty Publications

The effect of the crystallinity and the grain texturing of CoPt hard layers on exchange coupled Fe/CoPt soft/hard magnetic systems was studied using gradient thickness multilayer thin films. We have studied the hard layer structures by transmission electron microscopy and x-ray diffraction, and characterized the exchange coupling interaction through magnetization loops obtained by the magneto-optical Kerr effect measurement. We found that exchange coupling strongly depends on the crystalline characteristics of the CoPt hard layer. There is correlation between the mixture of different grain orientations of the CoPt hard layer and coupling efficiency. In particular, interlayer coupling is enhanced when there …


Reduction Of Model Order Based On Proper Orthogonal Decomposition For Lithium-Ion Battery Simulations, Long Cai, Ralph E. White Jan 2009

Reduction Of Model Order Based On Proper Orthogonal Decomposition For Lithium-Ion Battery Simulations, Long Cai, Ralph E. White

Faculty Publications

A reduced-order model (ROM) is developed using proper orthogonal decomposition (POD) for a physics-based lithium-ion battery model. The methodology to obtain the proper orthogonal modes and to analyze their optimality is included. The POD-based ROM for a lithium-ion battery is used to simulate a charge/discharge process and the behavior of a battery pack. Compared to the physics-based model, the computational time to solve the ROM is significantly less, and the two models show excellent agreement.