Open Access. Powered by Scholars. Published by Universities.®

Biochemical and Biomolecular Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Doctoral Dissertations

Discipline
Institution
Keyword
Publication Year

Articles 1 - 30 of 40

Full-Text Articles in Biochemical and Biomolecular Engineering

Characterization Of Lignin Structural Variability And The Associated Application In Genome Wide Association Studies, Nathan D. Bryant Dec 2023

Characterization Of Lignin Structural Variability And The Associated Application In Genome Wide Association Studies, Nathan D. Bryant

Doctoral Dissertations

Poplar (Populus sp.) is a promising biofuel feedstock due to advantageous features such as fast growth, the ability to grow on marginal land, and relatively low lignin content. However, there is tremendous variability associated with the composition of biomass. Understanding this variability, especially in lignin, is crucial to developing and implementing financially viable, integrated biorefineries. Although lignin is typically described as being comprised of three primary monolignols (syringyl, guaiacyl, p-hydroxyphenyl), it is a highly irregular biopolymer that can incorporate non-canonical monolignols. It is also connected by a variety of interunit linkages, adding to its complexity. Secondary cell wall …


Understanding Lignin’S Fast Pyrolysis Through Examination Of The Thermolysis Mechanisms Of Model Oligomers, Ross Wesley Houston Aug 2023

Understanding Lignin’S Fast Pyrolysis Through Examination Of The Thermolysis Mechanisms Of Model Oligomers, Ross Wesley Houston

Doctoral Dissertations

The lignocellulosic biorefinery is a visionary concept that endeavors to provide an alternative to fossil-based refineries by producing biobased fungible fuels and specialty chemicals almost exclusively derived currently from petroleum refineries. This vision of the lignocellulosic biorefinery can only be realized if all fractions of lignocellulosic biomass are efficiently deconstructed and valorized to generate a diverse portfolio of products to sustain it against market vicissitudes. Of the three main structural constituents of lignocellulosic biomass (i.e., cellulose, hemicellulose, and lignin), lignin is underutilized despite being the most abundant renewable source of aromatic platform chemicals, representing a growing 250 billion dollar market. …


Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


A Rapid And Ultra-Sensitive Biosensing Platform Based On Tunable Dielectrophoresis For Robust Poc Applications, Yu Jiang Aug 2022

A Rapid And Ultra-Sensitive Biosensing Platform Based On Tunable Dielectrophoresis For Robust Poc Applications, Yu Jiang

Doctoral Dissertations

With the ongoing pandemic, there have been increasing concerns recently regarding major public health issues such as abuse of organophosphorus compounds, pathogenic bacterial infections, and biosecurity in agricultural production. Biosensors have long been considered a kernel technology for next-generation diagnostic solutions to improve food safety and public health. Significant amounts of effort have been devoted to inventing novel sensing mechanisms, modifying their designs, improving their performance, and extending their application scopes. However, the reliability and selectivity of most biosensors still have much to be desired, which holds back the development and commercialization of biosensors, especially for on-site and point-of-care (POC) …


Elucidating Mammalian Cellular Responses To The Uptake Of Nanoparticles (Nps), Pathogens, And Lipoproteins: Similarities And Differences, Monireh Asoudeh Aug 2022

Elucidating Mammalian Cellular Responses To The Uptake Of Nanoparticles (Nps), Pathogens, And Lipoproteins: Similarities And Differences, Monireh Asoudeh

Doctoral Dissertations

Soft poly-ethylene-glycol (PEG)-based soft nanoparticles (NPs) including cylindrical (CNPs) micelles, spherical (SNPs) micelles, and lipid bilayer vesicles (LNPs) are thought to be treated as foreign objects by mammalian phagocytes. If this hypothesis is true, NPs should trigger a proinflammatory, autophagic phenotype that is similar to the one seen when macrophages phagocytose pathogens or when macrophage surface expressed proteins bind pathogen surface factors such as lipopolysaccharide (LPS). Here, we show that macrophage responses to the above NPs are almost completely unique from those triggered by group A streptococcus (GAS) pathogens (JRS4 cells) and LPS. Instead, macrophages treat these soft NPs more …


Crowd Control: Regulating The Spatial Organization Of Biopolymers And Gene Expression By Macromolecular Crowding, Gaurav Chauhan May 2022

Crowd Control: Regulating The Spatial Organization Of Biopolymers And Gene Expression By Macromolecular Crowding, Gaurav Chauhan

Doctoral Dissertations

The intracellular environment is crowded with macromolecules that can occupy a significant fraction of the cellular volume. This can give rise to attractive depletion interactions that impact the conformations and interactions of biopolymers, as well as their interactions with confining surfaces. We used computer simulations to study the effects of crowding on biologically-inspired models of polymers. We showed that crowding can lead to attractive interactions between two flexible ring polymers, and we further characterized the adsorption of both flexible and semiflexible polymers onto confining surfaces. These results indicate that crowding-induced depletion interactions could play a role in the spatial organization …


Interactions Between Soft Nanoparticles And Mammalian Cells, Mitchell Raith May 2022

Interactions Between Soft Nanoparticles And Mammalian Cells, Mitchell Raith

Doctoral Dissertations

Nanoparticles have been of interest to the pharmaceutical industry since the 1980s. The first FDA approved nanoparticle-based therapies included liposomal anesthesia agents. Since then, the amount of FDA-approved nanoparticle therapies remains low. This is because nanoparticle-patient interactions can be very complex and are not well understood. Complicating factors also include increasing obesity rates among the patient population and many small animal pre-clinical trials are completed with healthy, lean animals. The biochemical differences between lean and obese patients prevents early studies from accurately predicting nanoparticle clinical behaviors. Many nanoparticles fail in trails. In this thesis, I aimed to uncover how nanoparticles …


Improving The Biocompatibility Of The Bio-Inorganic Interface For Enhanced Photosystem I-Based Biophotovoltaic Device Performance, Alexandra H. Teodor May 2022

Improving The Biocompatibility Of The Bio-Inorganic Interface For Enhanced Photosystem I-Based Biophotovoltaic Device Performance, Alexandra H. Teodor

Doctoral Dissertations

The world’s energy demands are projected to increase by nearly 50% by the year 2040, and consumption of carbon-based fuels continues to release greenhouse gases such as carbon dioxide and methane into the atmosphere. This has been causally linked with climate change and increased extreme weather events, which has been further linked to adverse health outcomes and negative effects on biodiversity, food security, and increased disease transmission. Clearly, there is a need for a sustainable, carbon-free, and cost-effective method of energy production to meet growing energy production demands. The sun irradiates Earth’s surface annually with ~80,000 terawatts (TW), making solar …


Novel Approaches Towards Improved Purity In High Yield Transcription Reactions, Elvan Cavac Jun 2021

Novel Approaches Towards Improved Purity In High Yield Transcription Reactions, Elvan Cavac

Doctoral Dissertations

High yields of RNA (e.g., mRNA, gRNA, lncRNA) are routinely prepared following a two-step approach: high yield in vitro transcription using T7 RNA polymerase, followed by extensive purification using gel or chromatic methods. In high yield transcription reactions, as RNA accumulates in solution, T7 RNA polymerase rebinds and extends the encoded RNA (using the RNA as a template), resulting in a product pool contaminated with longer than desired, (partially) double stranded impurities. Current purification methods often fail to fully eliminate these impurities which, if present in therapeutics, can stimulate the innate immune response with potentially fatal consequences. This study establishes …


Elucidating Mechanisms And Genotypes Underlying Robust Phenotypes In Yarrowia Lipolytica, Caleb M. Walker May 2021

Elucidating Mechanisms And Genotypes Underlying Robust Phenotypes In Yarrowia Lipolytica, Caleb M. Walker

Doctoral Dissertations

Robustness is an important phenotype for bioenergy microbes to acquire but is difficult to engineer. Hence, tools for engineering microbial robustness are critical to unlock novel phenotypes for innovative bioprocessing strategies. The oleaginous yeast, Yarrowia lipolytica, is an exceptionally robust microbe that can tolerate stressful environments, assimilate a wide range of substrates, and produce high-value chemicals. In this doctoral dissertation, the impacts of systems biology and metabolic engineering to reveal mechanisms and identify genotypes- underlying robust phenotypes are addressed.

The first approach employs adaptive laboratory engineering to generate a platform strain by which to study superior robust mechanisms. This …


Engineering Modularity Of Ester Biosynthesis Across Biological Scales, Hyeongmin Seo May 2021

Engineering Modularity Of Ester Biosynthesis Across Biological Scales, Hyeongmin Seo

Doctoral Dissertations

Metabolic engineering and synthetic biology enable controlled manipulation of whole-cell biocatalysts to produce valuable chemicals from renewable feedstocks in a rapid and efficient manner, helping reduce our reliance on the conventional petroleum-based chemical synthesis. However, strain engineering process is costly and time-consuming that developing economically competitive bioprocess at industrial scale is still challenging. To accelerate the strain engineering process, modular cell engineering has been proposed as an innovative approach that harnesses modularity of metabolism for designing microbial cell factories. It is important to understand biological modularity and to develop design principles for effective implementation of modular cell engineering. In this …


Metabolic Modeling Of Gas Fermentation For Renewable Fuel And Chemical Production, Xiangan Li Apr 2021

Metabolic Modeling Of Gas Fermentation For Renewable Fuel And Chemical Production, Xiangan Li

Doctoral Dissertations

Gas fermentation has emerged as a technologically and economically attractive option for producing renewable fuels and chemicals from carbon monoxide (CO) rich waste streams. As compared to traditional catalyst technologies, microbial systems have several advantages including operation near ambient temperature and pressure, high conversion efficiencies, robustness to gas impurities and high product yields that have motivated both fundamental research and commercial development. While microbial production of high-value products from waste gases is challenging because wild-type strains capable of gas consumption tend to synthesize these products at low yields, strategy like metabolically engineering the gas fermenting acetogens have been studied to …


Micro-Physiological Models To Mimic Mucosal Barrier Complexity Of The Human Intestine In Vitro, Abhinav Sharma Dec 2020

Micro-Physiological Models To Mimic Mucosal Barrier Complexity Of The Human Intestine In Vitro, Abhinav Sharma

Doctoral Dissertations

The mucosal barrier in the intestine is vital to maintain selective absorption of nutrients while protecting internal tissues and maintaining symbiotic relationship with luminal microbiota. This bio-barrier consists of a cellular epithelial barrier and an acellular mucus barrier. Secreted mucus regulates barrier function via in situ biochemical and biophysical interaction with luminal content that continually evolves during digestion and absorption. Increasing evidence suggests that a mucus barrier is indispensable to maintain homeostasis in the gastrointestinal tract. However, the importance of mucus barrier is largely underrated for in vitro mucosal tissue modeling. The major gap is the lack of experimental material …


Approaches To Studying Bacterial Biofilms In The Bioeconomy With Nanofabrication Techniques And Engineered Platforms., Michelle Caroline Halsted Dec 2020

Approaches To Studying Bacterial Biofilms In The Bioeconomy With Nanofabrication Techniques And Engineered Platforms., Michelle Caroline Halsted

Doctoral Dissertations

Studies that estimate more than 90% of bacteria subsist in a biofilm state to survive environmental stressors. These biofilms persist on man-made and natural surfaces, and examples of the rich biofilm diversity extends from the roots of bioenergy crops to electroactive biofilms in bioelectrochemical reactors. Efforts to optimize microbial systems in the bioeconomy will benefit from an improved fundamental understanding of bacterial biofilms. An understanding of these microbial systems shows promise to increase crop yields with precision agriculture (e.g. biosynthetic fertilizer, microbial pesticides, and soil remediation) and increase commodity production yields in bioreactors. Yet conventional laboratory methods investigate these micron-scale …


Rapid Design, Construction, And Validation Of Synthetic Metabolic Pathways In A Modular Escherichia Coli (Chassis) Cell, Jong-Won Lee Dec 2020

Rapid Design, Construction, And Validation Of Synthetic Metabolic Pathways In A Modular Escherichia Coli (Chassis) Cell, Jong-Won Lee

Doctoral Dissertations

Current strain development has been hindered by the vast biochemical space in nature. The concept of modular cell design has been invented to enable rapid and predictable construction of multiple optimal production strains for efficient production of a large variety of biochemicals with minimal experimental effort. While modular cell design principles have been successfully validated in some cases, its development is still limited by the small library of the production modules demonstrated.

The goals of this thesis are i) to establish a framework for rapid design, construction, and validation of production modules to explore a large space of molecules (e.g., …


Sequence Control Of Complex Coacervation, Li-Wei Chang Jul 2020

Sequence Control Of Complex Coacervation, Li-Wei Chang

Doctoral Dissertations

Complex coacervation is a liquid-liquid phase separation driven by the complexation of oppositely charged polyelectrolytes. The resulting coacervate phase has been used for many applications, such as underwater adhesives, drug delivery, food and personal care products. There also has been increasing interest in coacervate-like droplets occurring in biological systems. The majority of these “membraneless organelles” involve a combination of intrinsically-disordered proteins and RNA, and phase separate due to long-range charge effects and short-range hydrophobic effects. While evolution has optimized the self-assembly of these types of biological polymers, our ability to design such materials remains limited, in part because the relevant …


Biophysical Features Of The Extracellular Matrix Direct Breast Cancer Metastasis, Alyssa Schwartz Nov 2018

Biophysical Features Of The Extracellular Matrix Direct Breast Cancer Metastasis, Alyssa Schwartz

Doctoral Dissertations

Breast cancer is plagued by two key clinical challenges; drug resistance and metastasis. Most work to date probes these events on an extremely rigid plastic surface, which recapitulates few aspects of these processes in humans. A malignant cell first resides in breast tissue, then likely travels to the bone, brain, liver, or lung, each of which has a distinct mechanical and biochemical profile. Cells transmit mechanical forces into intracellular tension and biochemical signaling events, and here we hypothesize that this mechanotransduction influences drug response, growth, and migration. To probe the impact of extracellular matrix on drug resistance, we defined a …


New Approaches In Engineering Somatic Embryogenesis In Loblolly Pine Suspension Cultures, Elizabeth Morgan Cummings Bende Jul 2018

New Approaches In Engineering Somatic Embryogenesis In Loblolly Pine Suspension Cultures, Elizabeth Morgan Cummings Bende

Doctoral Dissertations

Many industries including agriculture and healthcare require efficient methods for replication of plants with optimal traits. The loblolly pine (Pinus taeda) is a valuable crop in the timber industry, occupying 30 million acres of U.S. land, and breeding efforts aim to produce a crop with ideal phenotypic traits, including superior growth and wood quality. One method to large-scale clonal crop propagation is somatic embryogenesis (SE), the process through which asexual (somatic) plant cells undergo differentiation in vitro, resulting in germination-competent embryos. There are three main stages of growth and development that lead to the production of embryos: …


Metabolic Modeling And Engineering Of Gas Fermentation In Bubble Column Reactors, Jin Chen Nov 2017

Metabolic Modeling And Engineering Of Gas Fermentation In Bubble Column Reactors, Jin Chen

Doctoral Dissertations

Gas fermentation is an attractive route to produce alternative fuels and chemicals from non-food feedstocks, such as waste gas streams from steel mills and synthesis gas (mainly CO and H2) produced from municipal solid waste through gasification. While commercial development of gas fermentation technology is underway, many research problems must be addressed to further advance the technology towards economic competitiveness. A particularly important challenge is to develop integrated metabolic and transport models that describe gas fermentation in industrially relevant bubble column reactors. I have developed and evaluated a spatiotemporal metabolic model for bubble column reactors with the syngas …


Vitreous Gel Physics, Svetlana Morozova Jul 2017

Vitreous Gel Physics, Svetlana Morozova

Doctoral Dissertations

The transparent vitreous, which fills the posterior cavity of the eye, is incredibly engineered. The charged polyelectrolyte hyaluronic acid (HA) network swells to maintain the pressure in the eye, while stiff collagen type II bundles help absorb any external mechanical shock. Our investigations have contributed to a few key developments related to the physical properties of the vitreous: (1) The stiff collagen network that supports the soft gel network is self-assembled from single triple-helix collagen proteins. Electrostatic interactions drive this assembly, such that the size and concentration are optimized at physiological salt concentrations. The width of the assemblies remarkably changes …


Morphological And Photoelectrochemical Characterization Of Membrane Reconstituted Photosystem I (Psi), Seyedeh Hanieh Niroomand May 2017

Morphological And Photoelectrochemical Characterization Of Membrane Reconstituted Photosystem I (Psi), Seyedeh Hanieh Niroomand

Doctoral Dissertations

The robust structural and photoactive electrochemical properties of Photosystem I (PSI), a transmembrane photosynthetic protein complex, make it an ideal candidate for incorporation into solid state bioelectronic or hybrid photovoltaic devices. However, the first step towards the successful fabrication of such devices requires systematic assembly of oriented and functional PSI onto desired bio-abio interfaces via suitable protein scaffoldings. Hence, this dissertation focuses on utilizing the cyanobacterial PSI for integration into organic/inorganic interfaces that mediate photo-electrochemical energy conversions for electricity and/or solar fuel production. To this end, in this study the effect of systematic incorporation of PSI complexes into synthetic membrane-bound …


Elucidating The Effects Of Metabolic State On Nanoparticle Distribution In Mice And In Vitro Uptake, Kevin James Quigley Dec 2016

Elucidating The Effects Of Metabolic State On Nanoparticle Distribution In Mice And In Vitro Uptake, Kevin James Quigley

Doctoral Dissertations

Since almost 70% of the U.S. population over 20 years old is overweight and 30% is obese, with much of the western world following suit, many patients that will potentially be administered circulating nanoparticles designed to localize to tumors and avoid non-target areas will have significant amounts of white adipose tissue (WAT), enlarged livers, and additional metabolic complications such as type 2 diabetes. However, studies on nanoparticle biodistribution and efficacy take place almost without exception in lean rodents with healthy metabolic states. In this work, I determined the biodistribution of model nanoparticles – neutral filomicelles and polystyrene spheres both carrying …


Label-Free And Aptamer-Based Surface Enhanced Raman Spectroscopy For Detection Of Food Contaminants, Shintaro Pang Nov 2016

Label-Free And Aptamer-Based Surface Enhanced Raman Spectroscopy For Detection Of Food Contaminants, Shintaro Pang

Doctoral Dissertations

The development of analytical methods to detect food contaminants is a critical step for improving food safety. Surface enhanced Raman spectroscopy (SERS) is an emerging detection technology that has the potential to rapidly, accurately and sensitively detect a wide variety of food contaminants. However, SERS detection becomes a challenge in real complex matrix, such as food, since non-specific matrix signals have the potential to drown out target associated Raman peaks. In this dissertation, we focused on the development and application of label-free, aptamer-based SERS in order to improve the accuracy and specificity of target contaminant detection in food. To accomplish …


Bioengineered Platforms To Study Carcinoma Cell Response To Drug Treatment, Thuy V. Nguyen Jul 2016

Bioengineered Platforms To Study Carcinoma Cell Response To Drug Treatment, Thuy V. Nguyen

Doctoral Dissertations

The tumor extracellular matrix (ECM) plays an important role in facilitating tumor growth and mediating tumor cells' resistance to drugs. However, during drug development, potential chemotherapeutics are screened in plastic plates, which lack relevant ECM physicochemical cues. In order to improve drug development process, this dissertation includes the development of relevant 2D and 3D biomaterial systems that can be used to study carcinoma cell response to drug treatment. A novel poly(ethylene glycol)-phosphorylcholine (PEG-PC) high-throughput biomaterial platform was developed to study how the ECM mechanochemical properties affect cancer cells' response to drug. The PEG-PC biomaterial is optically transparent, has a mechanical …


In Silico Driven Metabolic Engineering Towards Enhancing Biofuel And Biochemical Production, Richard Adam Thompson May 2016

In Silico Driven Metabolic Engineering Towards Enhancing Biofuel And Biochemical Production, Richard Adam Thompson

Doctoral Dissertations

The development of a secure and sustainable energy economy is likely to require the production of fuels and commodity chemicals in a renewable manner. There has been renewed interest in biological commodity chemical production recently, in particular focusing on non-edible feedstocks. The fields of metabolic engineering and synthetic biology have arisen in the past 20 years to address the challenge of chemical production from biological feedstocks. Metabolic modeling is a powerful tool for studying the metabolism of an organism and predicting the effects of metabolic engineering strategies. Various techniques have been developed for modeling cellular metabolism, with the underlying principle …


Immobilization Of Cellulase For Large Scale Reactors To Reduce Cellulosic Ethanol Cost, Dezhi Zhang Apr 2016

Immobilization Of Cellulase For Large Scale Reactors To Reduce Cellulosic Ethanol Cost, Dezhi Zhang

Doctoral Dissertations

Cellulosic ethanol is an alternative renewable energy source. Cellulase used in the production of cellulosic ethanol is very expensive. The difficulty in separating cellulase from the cellulose solution after the hydrolysis process limits the reusability of the cellulase, which highly precludes the scales of this application because of the high cost of the enzyme. Immobilization of cellulase provides a promising approach to allow the enzyme to be recycled, thus reducing the production cost. This research focused on immobilizing cellulase for reuse to reduce the cellulosic ethanol cost.

Four immobilization techniques were explored for the immobilization of cellulase on four different …


Elucidating Mechanisms Of Lipid Droplet Formation In The Fission Yeast, Schizosaccharomyces Pombe, Alexander William Meyers Dec 2015

Elucidating Mechanisms Of Lipid Droplet Formation In The Fission Yeast, Schizosaccharomyces Pombe, Alexander William Meyers

Doctoral Dissertations

Cellular function relies on the proper sequestration of fats in organelles called lipid droplets. Lipid droplet metabolism is inherently linked to many disorders including obesity, type-2 diabetes, and atherosclerosis, so further elucidation of the bio-physical phenomena governing these diseases, is crucial for their respective treatments.

Once widely regarded as inert, these neutral lipid storage depots are highly dynamic and are increasingly shown to affect a wide array of biological processes. Droplet formation requires the accumulation of neutral lipids and related factors at specific cellular domains, however because this occurs at nanometer length-scales, details are lacking. Here, we try to provide …


Multi-Scale Characterization And Engineering Of Taxus Suspension Cultures, Sarah A. Wilson Nov 2015

Multi-Scale Characterization And Engineering Of Taxus Suspension Cultures, Sarah A. Wilson

Doctoral Dissertations

Plants produce a diversity of natural products that have commercial applications as flavorings, fragrances, pesticides and pharmaceuticals. These compounds are often the result of specialized metabolic pathways that are unique to plant systems, and have complex structures that make chemical synthesis routes infeasible. This necessitates exploitation of biological production routes. This thesis work presents a multi-scale characterization and engineering approach to understand and manipulate plant cell cultures on the extracellular (culture) and intracellular (metabolic pathway) levels. Studies focus on the commercially relevant suspension culture system Taxus, a medicinal plant species used for production of the FDA-approved anticancer drug paclitaxel. …


Mimicking The Arterial Microenvironment With Peg-Pc To Investigate The Roles Of Physicochemical Stimuli In Smc Phenotype And Behavior, William G. Herrick Aug 2015

Mimicking The Arterial Microenvironment With Peg-Pc To Investigate The Roles Of Physicochemical Stimuli In Smc Phenotype And Behavior, William G. Herrick

Doctoral Dissertations

The goal of this dissertation was to parse the roles of physical, mechanical and chemical cues in the phenotype plasticity of smooth muscle cells (SMCs) in atherosclerosis. We first developed and characterized a novel synthetic hydrogel with desirable traits for studying mechanotransduction in vitro. This hydrogel, PEG-PC, is a co-polymer of poly(ethylene glycol) and phosphorylcholine with an incredible range of Young’s moduli (~1 kPa - 9 MPa) that enables reproduction of nearly any tissue stiffness, exceptional optical and anti-fouling properties, and support for covalent attachment of extracellular matrix (ECM) proteins. To our knowledge, this combination of mechanical range, low …


Photosystem I-Based Applications For The Photo-Catalyzed Production Of Hydrogen And Electricity, Rosemary Khuu Le Dec 2014

Photosystem I-Based Applications For The Photo-Catalyzed Production Of Hydrogen And Electricity, Rosemary Khuu Le

Doctoral Dissertations

The aim of this dissertation was to optimize systems integrating the photosystem I (PSI) redox protein, which is involved in photosynthesis, with noble metals for electron transfer to show its versatility: 1) in solution coupled with platinum to mediate hydrogen evolution and 2) on a planar gold surface for electricity production.

Response surface methodology was utilized to study variables that affect hydrogen (H2) yield from platinized-PSI. Light intensity, temperature, and platinum concentration were varied during the platinum-photo-reduction process. Analysis of the effects of the variables on H2 yield allowed for determination of a condition for optimized hydrogen …