Open Access. Powered by Scholars. Published by Universities.®

Biochemical and Biomolecular Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Arkansas, Fayetteville

2021

Discipline
Keyword
Publication

Articles 1 - 6 of 6

Full-Text Articles in Biochemical and Biomolecular Engineering

Greenhouse Tomatoes: Process Simulation, Juan Gabriel Marin Jr. Dec 2021

Greenhouse Tomatoes: Process Simulation, Juan Gabriel Marin Jr.

Graduate Theses and Dissertations

Growing population demand and challenges brought on by climate change have spurred the need for more resilient fruit and vegetable supply chains. One agricultural technology of significant interest is the use of greenhouses for food production. Greenhouses create a stable and adaptable environment for crops such as tomatoes to grow year-round. Fresh tomatoes are the second most consumed vegetable per capita in U.S. diets, currently averaging 20.7 pounds. The growing consumption of fresh tomatoes has been the result of increasing cultural diversity in the United States.

To meet the growing demand, Venlo-type greenhouses have been frequently used by growers. It …


Recombinant Production And Purification Of Green Fluorescent Protein (Gfp)-Fused Metal Binding Protein For Palladium Nanoparticle Synthesis, Shadrach Ibinola Dec 2021

Recombinant Production And Purification Of Green Fluorescent Protein (Gfp)-Fused Metal Binding Protein For Palladium Nanoparticle Synthesis, Shadrach Ibinola

Graduate Theses and Dissertations

In lieu of chemical and physical methods, biologically guided synthesis is increasingly used as a cost-effective medium for the fabrication of nanoparticles (NP). Recently, a palladium metal binding sequence Pd4 (TSNAVHPTLRHL) has been demonstrated to be instrumental in the production of palladium (Pd) nanoparticles. Although, by eliminating the additional cost of purification of the protein, the crude lysate of E. coli containing Pd specific protein has been proven to be a viable cost-effective means for the synthesis of Pd NP, studies have not be done to ascertain the comparative catalytic activity of nanoparticles synthesized from both clarified lysate and pure …


A Portable Point-Of-Care Device Using Joule Heating And Latent Energy Storage For The Temperature Regulation Of Isothermal Nucleic Acid Amplification Tests, Aubrey Lynn Schultz Jul 2021

A Portable Point-Of-Care Device Using Joule Heating And Latent Energy Storage For The Temperature Regulation Of Isothermal Nucleic Acid Amplification Tests, Aubrey Lynn Schultz

Graduate Theses and Dissertations

Accurate and early diagnosis of infectious diseases extremely important. Rapid diagnosis allows for effective treatment and increases the chance for recovery without complications. Additionally, the ability to test the populace frequently, swiftly, and affordably significantly aids in containing wide-scale outbreaks. In terms of specificity and sensitivity, nucleic acid amplification tests (NAAT) are one of the best options for diagnosing infectious diseases. Isothermal NAATS present a unique opportunity to create diagnostic tests deployed at a Point-of-Care (POC) level. Specifically, loop-mediated isothermal amplification (LAMP) and recombinase polymerase amplification (RPA) have the potential to deliver reliable POC diagnostics in low-resource settings. When designing …


Investigation Of Membrane Based Processes For Biomedical Applications, Efecan Pakkaner Jul 2021

Investigation Of Membrane Based Processes For Biomedical Applications, Efecan Pakkaner

Graduate Theses and Dissertations

As substantial developments were achieved in nanotechnology and polymer engineering, especially in the last few decades, the use of membranes and membrane-based procedures was found to be expanding into more and more research and development areas; including biological engineering, life sciences and biomedical engineering. Not only have they been the main focus of meaningful research, but they have also been the main pieces of the solutions to very thorny problems encountered within a wide range of applications from microfluidics to water treatment, thanks to their versatility, cost-effectiveness and biocompatibility, when compared to conventional separation techniques. To celebrate and embrace these …


Investigative Study Of Microalgal And Electrochemical Wastewater Treatment Systems And Modeling Of The Wafer-Enhanced Electrodeionization Using Supervised Learning, Humeyra Betul Ulusoy Erol May 2021

Investigative Study Of Microalgal And Electrochemical Wastewater Treatment Systems And Modeling Of The Wafer-Enhanced Electrodeionization Using Supervised Learning, Humeyra Betul Ulusoy Erol

Graduate Theses and Dissertations

Wastewater has a serious impact on environment and public health due to its high concentration of nutrients and toxic contaminants. Without proper treatment, excess nutrients discharged in wastewater can cause a damage to the ecosystem such as undesirable pH shifts, cyanotoxin production, and low dissolved oxygen concentrations.

Main objectives of this dissertation work were to investigate i) the biofuel potential of P. cruentum when grown in swine wastewater, ii) the influence of four most commonly used ion exchange resins on the system efficiency and selectivity for the removal of sodium, calcium, and magnesium ions, and iii) the modeling of wafer-enhanced …


Development Of An Integrated Salt Cartridge-Reverse Electrodialysis (Red) Device To Increase Electrolyte Concentrations Of Human Blood Flow To Power Biomedical Devices, Caroline Campbell May 2021

Development Of An Integrated Salt Cartridge-Reverse Electrodialysis (Red) Device To Increase Electrolyte Concentrations Of Human Blood Flow To Power Biomedical Devices, Caroline Campbell

Chemical Engineering Undergraduate Honors Theses

Emerging technologies in nanotechnology and biomedical sciences have led to an increase in biomedical implantable devices including cardiac pacemakers, artificial organs, drug pumps, and sensors. These devices require continuous stable and reliable power to operate, which creates the demand for the need to find a safe, reliable, and stable power source. A promising avenue for a power source for these devices is a miniaturized reverse electrodialysis (RED) biopower cell design that utilizes the salinity differences between bloodstreams that flow inside the human body. Initial results of the RED system demonstrate that higher gradient salinity differences between streams lead to a …