Open Access. Powered by Scholars. Published by Universities.®

Biochemical and Biomolecular Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Old Dominion University

Discipline
Keyword
Publication Year
Publication

Articles 1 - 8 of 8

Full-Text Articles in Biochemical and Biomolecular Engineering

Synthetic Approaches Of Carbohydrate Based Self-Assembling Systems, Guijun Wang, Anji Chen, Pramod Aryal, Jonathan Bietsch Jan 2024

Synthetic Approaches Of Carbohydrate Based Self-Assembling Systems, Guijun Wang, Anji Chen, Pramod Aryal, Jonathan Bietsch

Chemistry & Biochemistry Faculty Publications

Carbohydrate-based self-assembling systems are essential for the formation of advanced biocompatible materials via a bottom-up approach. The self-assembling of sugar-based small molecules has applications encompassing many research fields and has been studied extensively. In this focused review, we will discuss the synthetic approaches for carbohydrate-based self-assembling (SA) systems, the mechanisms of the assembly, as well as the main properties and applications. This review will mainly cover recent publications in the last four years from January 2020 to December 2023. We will essentially focus on small molecule self-assembly, excluding polymer-based systems, which include various derivatives of monosaccharides, disaccharides, and oligosaccharides. Glycolipids, …


Triphlapan: Predicting Hla Molecules Binding Peptides Based On Triple Coding Matrix And Transfer Learning, Meng Wang, Chuqi Lei, Jianxin Wang, Yaohang Li, Min Li Jan 2024

Triphlapan: Predicting Hla Molecules Binding Peptides Based On Triple Coding Matrix And Transfer Learning, Meng Wang, Chuqi Lei, Jianxin Wang, Yaohang Li, Min Li

Computer Science Faculty Publications

Human leukocyte antigen (HLA) recognizes foreign threats and triggers immune responses by presenting peptides to T cells. Computationally modeling the binding patterns between peptide and HLA is very important for the development of tumor vaccines. However, it is still a big challenge to accurately predict HLA molecules binding peptides. In this paper, we develop a new model TripHLApan for predicting HLA molecules binding peptides by integrating triple coding matrix, BiGRU + Attention models, and transfer learning strategy. We have found the main interaction site regions between HLA molecules and peptides, as well as the correlation between HLA encoding and binding …


Recent Advancements In Electrochemical Conversion Of Carbon Dioxide, Nandan Nag, Amit Kumar, Sumit Sharma, Sandeep Kumar, Amit K. Thakur Jan 2022

Recent Advancements In Electrochemical Conversion Of Carbon Dioxide, Nandan Nag, Amit Kumar, Sumit Sharma, Sandeep Kumar, Amit K. Thakur

Civil & Environmental Engineering Faculty Publications

Electrochemical reduction of carbon dioxide into eco-friendly and clean products is a promising approach to eradicate pollution. Although carbon dioxide emission is inhibited by the advent of renewable sources of energy, it is present in the atmosphere and needs to be cleaned. The reduction of carbon dioxide from atmospheric gases can be accomplished by its adsorption and subsequent transportation to electrolytic chambers, where it is reduced to hydrocarbons, organic acids or carbonates. This review focuses on developing a three compartment electrochemical cell to reduce carbon dioxide used as a catholyte. Various factors affecting the electrochemical reduction of carbon dioxide and …


Efficient Removal Of Lead Ions From Aqueous Media Using Sustainable Sources On Marine Algae, Hannah Namkoong, Erik Biehler, Gon Namkoong, Tarek M. Abdel-Fattah Jan 2022

Efficient Removal Of Lead Ions From Aqueous Media Using Sustainable Sources On Marine Algae, Hannah Namkoong, Erik Biehler, Gon Namkoong, Tarek M. Abdel-Fattah

Electrical & Computer Engineering Faculty Publications

The goal of this project is to explore a new method to efficiently remove Pb(II) ions from water by processing Undaria pinnatifida into immobilized beads using sodium alginate and calcium chloride. The resulting biosorbent was characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS). Using immobilized U. pinnatifida, we investigated the effect of various factors on Pb(II) ion removal efficiency such as temperature, pH, ionic strength, time, and underlying biosorption mechanisms. For Pb(II) ion biosorption studies, Pb(II) ion biosorption data were obtained and analyzed using Langmuir and Freundlich adsorption models. It …


Oxygen Harvesting From Carbon Dioxide: Simultaneous Epoxidation And Co Formation, Han Xu, Muhammad Shaban, Sui Wang, Anas Alkayal, Dingxin Liu, Michael G. Kong, Felix Plasser, Benjamin R. Buckley, Felipe Iza Jan 2021

Oxygen Harvesting From Carbon Dioxide: Simultaneous Epoxidation And Co Formation, Han Xu, Muhammad Shaban, Sui Wang, Anas Alkayal, Dingxin Liu, Michael G. Kong, Felix Plasser, Benjamin R. Buckley, Felipe Iza

Bioelectrics Publications

Due to increasing concentrations in the atmosphere, carbon dioxide has, in recent times, been targeted for utilisation (Carbon Capture Utilisation and Storage, CCUS). In particular, the production of CO from CO2 has been an area of intense interest, particularly since the CO can be utilized in Fischer–Tropsch synthesis. Herein we report that CO2 can also be used as a source of atomic oxygen that is efficiently harvested and used as a waste-free terminal oxidant for the oxidation of alkenes to epoxides. Simultaneously, the process yields CO. Utilization of the atomic oxygen does not only generate a valuable product, …


Lipid Extraction From Spirulina Sp. And Schizochytrium Sp. Using Supercritical Co2 With Methanol, Shihong Liu, Husam A. Abu Hajar, Guy Riefler, Ben J. Stuart Dec 2018

Lipid Extraction From Spirulina Sp. And Schizochytrium Sp. Using Supercritical Co2 With Methanol, Shihong Liu, Husam A. Abu Hajar, Guy Riefler, Ben J. Stuart

Civil & Environmental Engineering Faculty Publications

Microalgae are one of the most promising feedstocks for biodiesel production due to their high lipid content and easy farming. However, the extraction of lipids from microalgae is energy intensive and costly and involves the use of toxic organic solvents. Compared with organic solvent extraction, supercritical CO2 (SCCO2) has demonstrated advantages through lower toxicity and no solvent-liquid separation. Due to the nonpolar nature of SCCO2, polar organic solvents such as methanol may need to be added as a modifier in order to increase the extraction ability of SCCO2. In this paper, pilot scale lipid …


Characterization Of Biochars Produced From Peanut Hulls And Pine Wood With Different Pyrolysis Conditions, James W. Lee, Bob Hawkins, Michelle K. Kidder, Barbara R. Evans, A. C. Buchanan, Danny Day Jan 2016

Characterization Of Biochars Produced From Peanut Hulls And Pine Wood With Different Pyrolysis Conditions, James W. Lee, Bob Hawkins, Michelle K. Kidder, Barbara R. Evans, A. C. Buchanan, Danny Day

Chemistry & Biochemistry Faculty Publications

Background

Application of modern biomass pyrolysis methods for production of biofuels and biochar is potentially a significant approach to enable global carbon capture and sequestration. To realize this potential, it is essential to develop methods that produce biochar with the characteristics needed for effective soil amendment.

Methods

Biochar materials were produced from peanut hulls and pine wood with different pyrolysis conditions, then characterized by cation exchange (CEC) capacity assays, nitrogen adsorption–desorption isotherm measurements, micro/nanostructural imaging, infrared spectra and elemental analyses.

Results

Under a standard assay condition of pH 8.5, the CEC values of the peanut hull-derived biochar materials, ranging from …


Inactivation Of Bacterial Opportunistic Skin Pathogens By Nonthermal Dc-Operated Afterglow Atmospheric Plasma, L. C. Heller, C. M. Edelblute, A. M. Mattson, X. Hao, J. F. Kolb Nov 2012

Inactivation Of Bacterial Opportunistic Skin Pathogens By Nonthermal Dc-Operated Afterglow Atmospheric Plasma, L. C. Heller, C. M. Edelblute, A. M. Mattson, X. Hao, J. F. Kolb

Bioelectrics Publications

AIMS: Multidrug-resistant opportunistic pathogens are clinically significant and require the development of new antimicrobial methods. In this study, Acinetobacter baumannii, Pseudomonas aeruginosa and Staphylococcus aureus cells were exposed to atmospheric plasma on agar plates and in vitro on porcine skin for the purpose of testing bacterial inactivation.

METHODS AND RESULTS: Microbial inactivation at varying exposure durations was tested using a nonthermal plasma jet generated with a DC voltage from ambient air. The observed reduction in colony forming units was quantified as log10 reductions.

CONCLUSIONS: Direct plasma exposure significantly inactivated seeded bacterial cells by approx. 6 log10 …