Open Access. Powered by Scholars. Published by Universities.®

Biomaterials Commons

Open Access. Powered by Scholars. Published by Universities.®

2015

Discipline
Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 60

Full-Text Articles in Biomaterials

The Role Of Bone Sialoprotein In Periodontal Tissue Development And Bone Repair, Yohannes Soenjaya Dec 2015

The Role Of Bone Sialoprotein In Periodontal Tissue Development And Bone Repair, Yohannes Soenjaya

Electronic Thesis and Dissertation Repository

Bone development and repair involve complex processes that include interaction between cells and their surrounding matrix. In the body, bone sialoprotein (BSP) expression is up-regulated at the onset of mineralization. BSP is a multifunctional acidic phosphoprotein with collagen-binding, hydroxyapatite nucleating, and integrin recognition (RGD sequence, which is important for cell-attachment and signaling) regions. Mice lacking BSP expression (Bsp-/-), exhibit a bone phenotype with reductions in bone mineral density, bone length, osteoclast activation, and impaired bone healing. This thesis examined the role of BSP in tooth development and also its potential use as a therapeutic reagent for bone …


Getting To The Root Of Bacterial Hairs: What Is “S”?, Rebecca Gaddis, Samantha O'Conner, Evan Anderson, Terri Camesano, Nancy Burnham Dec 2015

Getting To The Root Of Bacterial Hairs: What Is “S”?, Rebecca Gaddis, Samantha O'Conner, Evan Anderson, Terri Camesano, Nancy Burnham

Nancy A. Burnham

An atomic force microscope (AFM) was used to measure the steric forces of lipopolysaccharides (LPS) on the biofilm-forming bacteria, Pseudomonas aeruginosa. It is well known that LPS play a vital role in biofilm formation. These forces were characterized with a modified version of the Alexander and de Gennes (AdG) model for polymers, which is a function of equilibrium brush length, L, probe radius, R, temperature, T, separation distance, D, and an indefinite density variable, s. This last parameter was originally distinguished by de Gennes as the root spacing or mesh spacing depending upon the type of polymer adhesion; however since …


A Collagen Based Tissue Engineered Heart Valve Shows Excellent Functionality And Remodelling After Dynamic Conditioning, Claire Brougham, Ricardo Moreira, Tanya J. Levingstone, Stefan Jockenhoevel, Petra Mela, Fergal J. O'Brien Dec 2015

A Collagen Based Tissue Engineered Heart Valve Shows Excellent Functionality And Remodelling After Dynamic Conditioning, Claire Brougham, Ricardo Moreira, Tanya J. Levingstone, Stefan Jockenhoevel, Petra Mela, Fergal J. O'Brien

Conference Papers

No abstract provided.


Promoting Extracellular Matrix Crosslinking In Synthetic Hydrogels, Marcos M. Manganare Nov 2015

Promoting Extracellular Matrix Crosslinking In Synthetic Hydrogels, Marcos M. Manganare

Masters Theses

The extracellular matrix (ECM) provides mechanical and biochemical support to tissues and cells. It is crucial for cell attachment, differentiation, and migration, as well as for ailment-associated processes such as angiogenesis, metastases and cancer development. An approach to study these phenomena is through emulation of the ECM by synthetic gels constructed of natural polymers, such as collagen and fibronectin, or simple but tunable materials such as poly(ethylene glycol) (PEG) crosslinked with short peptide sequences susceptible to digestion by metalloproteases and cell-binding domains. Our lab uses PEG gels to study cell behavior in three dimensions (3D). Although this system fosters cell …


The Development Of A Novel Polymer Based System For Gene Delivery, Anh Van Le Nov 2015

The Development Of A Novel Polymer Based System For Gene Delivery, Anh Van Le

FIU Electronic Theses and Dissertations

Gene therapy involves the use of nucleic acids, either DNA or RNA for the treatment, cure, or prevention of human diseases. Synthetic cationic polymers are promising as a tool for gene delivery because of their high level of design flexibility for biomaterial construction and are capable of binding and condensing DNA through electrostatic interactions.

Our lab has developed a novel polymer (poly (polyethylene glycol-dodecanoate) (PEGD), a polyester of polyethylene glycol (PEG) and dodecanedioic acid (DDA). PEGD is a linear viscous polymer that self-assembles into a vesicle upon immersion in an aqueous solution. A copolymer of dodecanedioc acid and polyethylene glycol …


Cobalt Ferrite Nanoparticles Fabricated Via Co-Precipitation In Air: Overview Of Size Control And Magnetic Properties, Dennis Toledo Nov 2015

Cobalt Ferrite Nanoparticles Fabricated Via Co-Precipitation In Air: Overview Of Size Control And Magnetic Properties, Dennis Toledo

FIU Electronic Theses and Dissertations

Cobalt Ferrite has important, size-dependent magnetic properties. Consequently, an overview of particle size is important. Co-precipitation in air was the fabrication method used because it is comparatively simple and safe. The effects of three different reaction times including 1, 2, 3 hour(s) on particle size were compared. Also, the effectiveness of three different capping agents (Oleic Acid, Polyvinylpyrollidone (PVP), and Trisodium Citrate) in reducing aggregation and correspondingly particle size were examined. Using Welch’s analysis of variance (ANOVA) and the relevant post hoc tests, there was no significant difference (p=0.05) between reaction times of 1 hour and 2 hours, but there …


Incorporation Of Fibrin Into A Collagen–Glycosaminoglycan Matrix Results In A Scaffold With Improved Mechanical Properties And Enhanced Capacity To Resist Cell-Mediated Contraction, Claire Brougham, Tanya J. Levingstone, Stefan Jockenhoevel, Thomas C. Flanagan, Fergal J. O'Brien Oct 2015

Incorporation Of Fibrin Into A Collagen–Glycosaminoglycan Matrix Results In A Scaffold With Improved Mechanical Properties And Enhanced Capacity To Resist Cell-Mediated Contraction, Claire Brougham, Tanya J. Levingstone, Stefan Jockenhoevel, Thomas C. Flanagan, Fergal J. O'Brien

Articles

Fibrin has many uses as a tissue engineering scaffold, however many in vivo studies have shown a reduction in function resulting from the susceptibility of fibrin to cell-mediated contraction. The overall aim of the present study was to develop and characterise a reinforced natural scaffold using fibrin, collagen and glycosaminoglycan (FCG), and to examine the cell-mediated contraction of this scaffold in comparison to fibrin gels. Through the use of an injection loading technique, a homogenous FCG scaffold was developed. Mechanical testing showed a sixfold increase in compressive modulus and a thirtyfold increase in tensile modulus of fibrin when reinforced with …


Label-Free Surface-Enhanced Raman Spectroscopy-Linked Immunosensor Assay (Slisa) For Environmental Surveillance, Vinay Bhardwaj Oct 2015

Label-Free Surface-Enhanced Raman Spectroscopy-Linked Immunosensor Assay (Slisa) For Environmental Surveillance, Vinay Bhardwaj

FIU Electronic Theses and Dissertations

The contamination of the environment, accidental or intentional, in particular with chemical toxins such as industrial chemicals and chemical warfare agents has increased public fear. There is a critical requirement for the continuous detection of toxins present at very low levels in the environment. Indeed, some ultra-sensitive analytical techniques already exist, for example chromatography and mass spectroscopy, which are approved by the US Environmental Protection Agency for the detection of toxins. However, these techniques are limited to the detection of known toxins. Cellular expression of genomic and proteomic biomarkers in response to toxins allows monitoring of known as well as …


Mechanical Characterization Of Carbon Fiber And Thermoplastic Ankle Foot Orthoses, Amanda Wach Oct 2015

Mechanical Characterization Of Carbon Fiber And Thermoplastic Ankle Foot Orthoses, Amanda Wach

Master's Theses (2009 -)

The needs of an increasingly young and active orthotic patient population has led to advancements in ankle foot orthosis (AFO) design and materials to enable higher function. The Intrepid Dynamic Exoskeletal Orthosis (IDEO) is a custom energy-storing carbon fiber AFO that has demonstrated improved clinical function, allowing patients to return to high-intensity activities such as sports and military service. An improved understanding of AFO mechanical function will aid prescription and fitting, as well as assist in design modifications for different patient populations. This study investigated the mechanical properties of AFOs, specifically structural stiffness, rotational motion, and strut deflection, to discern …


Effect Of Hemiarthroplasty Implant Contact Geometry And Material On Early Cartilage Wear, Alana Khayat Sep 2015

Effect Of Hemiarthroplasty Implant Contact Geometry And Material On Early Cartilage Wear, Alana Khayat

Electronic Thesis and Dissertation Repository

Hemiarthroplasty is a minimally invasive, cost-effective alternative to total arthroplasty in joints of the upper limb. Though these procedures reduce patient morbidity while restoring joint kinematics, their longevity is limited by wear of the adjacent cartilage. This work investigates the roles of contact geometry and implant stiffness on cartilage wear with the aim of elucidating the mechanics that contribute to cartilage damage. An in vitro study examined the influence of implant geometry on cartilage wear using a pin-on-plate wear simulator. A significant decrease in volumetric wear was observed as contact area increased, which suggests that maximizing contact area should be …


The Role Of Biological Fluid And Dynamic Flow In The Behavior And Cellular Interactions Of Gold Nanoparticles, Emily K. Breitner, Saber M. Hussain, Kristen K. Comfort Sep 2015

The Role Of Biological Fluid And Dynamic Flow In The Behavior And Cellular Interactions Of Gold Nanoparticles, Emily K. Breitner, Saber M. Hussain, Kristen K. Comfort

Chemical and Materials Engineering Faculty Publications

Background: Due to their distinctive physicochemical properties, nanoparticles (NPs) have proven to be extremely advantageous for product and application development, but are also capable of inducing detrimental outcomes in biological systems. Standard in vitro methodologies are currently the primary means for evaluating NP safety, as vast quantities of particles exist that require appraisal. However, cell-based models are plagued by the fact that they are not representative of complex physiological systems. The need for a more accurate exposure model is highlighted by the fact that NP behavior and subsequent bioresponses are highly dependent upon their surroundings. Therefore, standard in vitro models …


3d Scaffolds In Tissue Engineering And Regenerative Medicine: Beyond Structural Templates?, Tierney Deluzio, Dawit Seifu, Kibret Mequanint Aug 2015

3d Scaffolds In Tissue Engineering And Regenerative Medicine: Beyond Structural Templates?, Tierney Deluzio, Dawit Seifu, Kibret Mequanint

Tierney GB Deluzio

The objective of this article is to systematically present the emerging understanding that 3D porous scaffolds serve not only as structural templates for tissue fabrication but also provide complex signaling cues to cells and facilitate oxygen and therapeutic agent delivery. Strategies in the field of tissue engineering and regenerative medicine often rely on 3D scaffolds to mimic the natural extracellular matrix as structural templates that support cell adhesion, migration, differentiation and proliferation, and provide guidance for neo-tissue formation. In addition to providing a temporary support for tissue fabrication, 3D scaffolds have also been used to study cell signaling that best …


3d Scaffolds In Tissue Engineering And Regenerative Medicine: Beyond Structural Templates?, Tierney Deluzio, Dawit Seifu, Kibret Mequanint Aug 2015

3d Scaffolds In Tissue Engineering And Regenerative Medicine: Beyond Structural Templates?, Tierney Deluzio, Dawit Seifu, Kibret Mequanint

Tierney GB Deluzio

The objective of this article is to systematically present the emerging understanding that 3D porous scaffolds serve not only as structural templates for tissue fabrication but also provide complex signaling cues to cells and facilitate oxygen and therapeutic agent delivery. Strategies in the field of tissue engineering and regenerative medicine often rely on 3D scaffolds to mimic the natural extracellular matrix as structural templates that support cell adhesion, migration, differentiation and proliferation, and provide guidance for neo-tissue formation. In addition to providing a temporary support for tissue fabrication, 3D scaffolds have also been used to study cell signaling that best …


Mimicking The Arterial Microenvironment With Peg-Pc To Investigate The Roles Of Physicochemical Stimuli In Smc Phenotype And Behavior, William G. Herrick Aug 2015

Mimicking The Arterial Microenvironment With Peg-Pc To Investigate The Roles Of Physicochemical Stimuli In Smc Phenotype And Behavior, William G. Herrick

Doctoral Dissertations

The goal of this dissertation was to parse the roles of physical, mechanical and chemical cues in the phenotype plasticity of smooth muscle cells (SMCs) in atherosclerosis. We first developed and characterized a novel synthetic hydrogel with desirable traits for studying mechanotransduction in vitro. This hydrogel, PEG-PC, is a co-polymer of poly(ethylene glycol) and phosphorylcholine with an incredible range of Young’s moduli (~1 kPa - 9 MPa) that enables reproduction of nearly any tissue stiffness, exceptional optical and anti-fouling properties, and support for covalent attachment of extracellular matrix (ECM) proteins. To our knowledge, this combination of mechanical range, low …


Three-Dimensional Confocal Microscopy Indentation Method For Hydrogel Elasticity Measurement, Donghee Lee, Md Mahmudur Rahman, You Zhou, Sangjin Ryu Aug 2015

Three-Dimensional Confocal Microscopy Indentation Method For Hydrogel Elasticity Measurement, Donghee Lee, Md Mahmudur Rahman, You Zhou, Sangjin Ryu

Md Mahmudur Rahman

No abstract provided.


Passive Acoustic Emissions Monitoring Of Fluidized Bed Pellet Coating, Taylor Sheahan Aug 2015

Passive Acoustic Emissions Monitoring Of Fluidized Bed Pellet Coating, Taylor Sheahan

Electronic Thesis and Dissertation Repository

Passive acoustic emissions were assessed for their potential as a non-invasive monitoring tool for the coating of pellets in a fluidized bed. Pharmaceutical pellets are small spherical particles that contain an active ingredient. They are film coated for the purpose of modified drug release and packed into capsules as a multiple unit dosage form. A more reliable monitoring and control method is desired to ensure the appropriate drug release profile is achieved by minimizing variations within and between coated pellets.

Microphones attached to the exterior of a conical top spray fluidized bed measured acoustic emissions produced from the coating process. …


Buckling-Driven Force Generation Of Cell Cortex, Pranith Lomada, Wonyeong Jung, Taeyoon Kim Aug 2015

Buckling-Driven Force Generation Of Cell Cortex, Pranith Lomada, Wonyeong Jung, Taeyoon Kim

The Summer Undergraduate Research Fellowship (SURF) Symposium

Actomyosin cortex, a thin network underlying cell membrane, is known to generate a large portion of tensile forces required for various cellular processes. Recently, theoretical studies predicted that buckling of actin filaments breaks symmetry between tensile and compressive forces developed by myosin motors, resulting in tensile stress at a network level. However, the significance of the filament buckling of the cortex has yet to be demonstrated either computationally or experimentally. Here, buckling-dependent stress generation of the cortex-like actomyosin network was investigated using an agent-based computational model consisting of actin filaments, actin cross-linking proteins (ACPs), and molecular motors. First, a wide …


Harnessing Notch Signaling For Biomaterial Scaffold-Based Bone Regeneration, Helena P. Lysandrou, Chunhui Jiang, Naagarajan Narayanan, Shihuan Kuang, Meng Deng Aug 2015

Harnessing Notch Signaling For Biomaterial Scaffold-Based Bone Regeneration, Helena P. Lysandrou, Chunhui Jiang, Naagarajan Narayanan, Shihuan Kuang, Meng Deng

The Summer Undergraduate Research Fellowship (SURF) Symposium

Bone fracture has recently become prevalent, especially with an increasingly aging population. Current bone grafts procedures, including autografts and allografts, are hindered by multiple factors, such as limited supplies and inconsistent bone healing. Scaffold-based bone tissue engineering emerges as a prospective strategy to aid in bone regeneration through delivery of growth factors such as bone morphogenic proteins (BMPs). However, the use of BMPs suffers from several drawbacks such as protein instability and immunogenicity. Therefore, there exists a great need for the development of novel therapies to promote bone healing. Notch signaling, a pathway critical for cell-fate determination has been shown …


Ultrasound-Guided Nanobubbles For Targeted Drug Delivery, Pei Yang, Pushpak Bhandari, Joseph Irudayaraj Aug 2015

Ultrasound-Guided Nanobubbles For Targeted Drug Delivery, Pei Yang, Pushpak Bhandari, Joseph Irudayaraj

The Summer Undergraduate Research Fellowship (SURF) Symposium

In a large number of biological and environmental applications, ultrasound (US)-powered micro- and nano-motors have attracted considerable attention. However, their applications in biological settings have been limited due to the incompatibility of metallic motors and the lack of precision guiding. Here, we demonstrate that cellulosic polymer nanobubbles (200-800nm) can be propelled, aligned, accelerated, and assembled in solution using Doppler ultrasound beam (DUB) and simultaneously imaged using low-frequency ultrasound. Results show that by utilizing Doppler ultrasound beam (DUB), nanobubbles accumulation at a pre-determined site can be enhanced. Moreover, bubbles’ trajectory and velocity can be also be manipulated. Related parameters associated with …


Adsorption Mechanisms Of Palladium On The Tobacco Mosaic Virus Surface, Gloriia D. Novikova, Oluwamayowa Adigun, Erin Retzlaff-Roberts, Michael T. Harris Aug 2015

Adsorption Mechanisms Of Palladium On The Tobacco Mosaic Virus Surface, Gloriia D. Novikova, Oluwamayowa Adigun, Erin Retzlaff-Roberts, Michael T. Harris

The Summer Undergraduate Research Fellowship (SURF) Symposium

Organic-inorganic materials synthesis using biological templates has recently drawn immense attention of researchers. Biotemplating has shown to be an efficient and economic means of nanomaterials production. Naturally stable, readily available and genetically malleable, Tobacco Mosaic Virus (TMV) is one of the most extensively studied and characterized biotemplates. Particularly, templated synthesis using TMV has produced high quality nanorods and nanowires that have been applied to batteries, memory devices and catalysis. The fundamental mechanisms, governing the adsorption of palladium on the TMV Wild Type and genetically modified versions (TMV1Cys and TMV2Cys), are not fully understood; this knowledge, however, is essential for future …


Bioengineered Cell Niche For Skeletal Muscle Regeneration, Nicole M. Whittern, Naagarajan Narayanan, Chunhui Jiang, Owen Jones, Jay Gilbert, Michael Whittern, Shihuan Kuang, Meng Deng Aug 2015

Bioengineered Cell Niche For Skeletal Muscle Regeneration, Nicole M. Whittern, Naagarajan Narayanan, Chunhui Jiang, Owen Jones, Jay Gilbert, Michael Whittern, Shihuan Kuang, Meng Deng

The Summer Undergraduate Research Fellowship (SURF) Symposium

Skeletal muscles can self-repair minor strains, lacerations, and contusions; however, in cases of volumetric muscle lossand muscle degenerative diseases, tissue fails to regenerate. Current cell-based therapies, such as myoblast transplantation, have significant drawbacks of low survival rates and engraftment efficacy, mainly due to the absence of supportive cell microenvironment. Scaffolds that mimic the natural cell microenvironment provide a robust platform to support cell adhesion, migration, proliferation, and differentiation. Electrospinning is a versatile technology platform used for fabricating the fiber scaffold that mimics the extracellular matrix. Thus, we aim to reconstitute the cell microenvironment through development of aligned fiber scaffolds by …


Breast Cancer/Stromal Cells Coculture On Polyelectrolyte Films Emulates Tumor Stages And Mirna Profiles Of Clinical Samples, Amita Daverey, Karleen M. Brown, Srivatsan Kidambi Aug 2015

Breast Cancer/Stromal Cells Coculture On Polyelectrolyte Films Emulates Tumor Stages And Mirna Profiles Of Clinical Samples, Amita Daverey, Karleen M. Brown, Srivatsan Kidambi

Department of Chemical and Biomolecular Engineering: Faculty Publications

In this study, we demonstrate a method for controlling breast cancer cells adhesion on polyelectrolyte multilayer (PEM) films without the aid of adhesive proteins/ ligands to study the role of tumor and stromal cell interaction on cancer biology. Numerous studies have explored engineering coculture of tumor and stromal cells predominantly using transwell coculture of stromal cells cultured onto coverslips that were subsequently added to tumor cell cultures. However, these systems imposed an artificial boundary that precluded cell−cell interactions. To our knowledge, this is the first demonstration of patterned coculture of tumor cells and stromal cells that captures the temporal changes …


Biodegradable Nano-Hybrid Polymer Composite Networks For Regulating Cellular Behavior, Charles Henley Sprague Aug 2015

Biodegradable Nano-Hybrid Polymer Composite Networks For Regulating Cellular Behavior, Charles Henley Sprague

Masters Theses

Photo-crosslinkable polymeric biomaterials have emerged in the field of biomedical research to promote tissue regeneration. For example, scaffolds that can be crosslinked and hardened in situ have been known to make suitable implant alternatives. Since injectable and photo-crosslinkable biomaterials offer the advantage of being minimally invasive, they have emerged to compete with autografts, a current highly invasive method to repair diseased tissue. A series of novel photo-crosslinkable, injectable, and biodegradable nano-hybrid polymers consisting of poly(ε-caprolactone fumarate) (PCLF) and polyhedral oligomeric silsesquioxane (POSS) has been synthesized in our laboratory via polycondensation. To engineer the material properties of the nano-hybrid networks, varied …


Bioactive Glass-Ceramic Coating Of Titanium Substrates By Alkaline Hydrothermal Process, Mohamed Gebril Jul 2015

Bioactive Glass-Ceramic Coating Of Titanium Substrates By Alkaline Hydrothermal Process, Mohamed Gebril

Electronic Thesis and Dissertation Repository

Surface modification is a well-known approach to enhance the osseointegration of titanium dental implants. In this study, a novel hydrothermal method for coating titanium surfaces with bioactive glass was developed. Our method included sol-gel synthesis of bioactive glass, followed by hydrothermal coating of titanium under different NaOH concentrations. The surface properties of coated substrates were evaluated by scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and surface profilometry. By varying the alkalinity of the hydrothermal process, different surface topographies, crystalline phases and chemistries could be obtained. Soaking the hydrothermally coated titanium substrates in simulated body fluid resulted in hydroxyapatite …


Synthesis And Evaluation Of A Novel Polymer Microfiber Drug Delivery System, Julie La Jul 2015

Synthesis And Evaluation Of A Novel Polymer Microfiber Drug Delivery System, Julie La

Electronic Thesis and Dissertation Repository

Skin cancer is the most prevalent cancer diagnosis worldwide. Squamous cell carcinoma (SCC) is one of the most common diagnoses. Fortunately, these cancers are rarely fatal if detected and treated early on. However, current treatment options can be painful, disfiguring and can require long-term treatment courses, resulting in poor patient compliance and cancer progression. Since SCC begins as precancerous lesions, an opportunity exists for early preventative interventions which this work aims to address. We produced stabilized microfibers via centrifugal spinning and UV photocrosslinking composed of poly(ethylene oxide) functionalized with cinnamoyl chloride. Curcumin, a molecule known for its anti-cancer properties was …


Multifunctional Nanoparticles For Theranostic Applications, Supriya Srinivasan Jul 2015

Multifunctional Nanoparticles For Theranostic Applications, Supriya Srinivasan

FIU Electronic Theses and Dissertations

Multifunctional agents for the management of highly heterogeneous diseases, like cancer, are gaining increased interest with the intent of improving the diagnostics and therapy of cancer patients. These agents are also important because more than one treatment modality is typically used for cancer therapy in the clinic. Further, nanotechnology offers a platform where more than one agent can be combined to help provide improved cancer diagnosis and therapy. Near-infrared light-activatable phototherapeutic agents have great potential in vivo. Body tissues have minimum absorption in the near- infrared range. They also have been shown to enhance the cytotoxic effect of chemotherapeutic …


Molecular Dynamics Investigation Of The Arabinan-Cellulose Interface For Cellulose Nanocomposite Applications, Luke Thornley Jun 2015

Molecular Dynamics Investigation Of The Arabinan-Cellulose Interface For Cellulose Nanocomposite Applications, Luke Thornley

Materials Engineering

Atom level computer simulations of the arabinan and cellulose interface were performed to better understand the mechanisms that give arabinan-cellulose composites (ArCCs) their strength with the goal to improve man-made ArCCs. The molecular dynamics (MD) software LAMMPS was used in conjunction with the ReaxFF/c force field to model the bond between cellulose and arabinan. A cellulose nanocrystal with dimensions 51 x 32 x 8 Å was minimized with various weight percent of water, 0%, 3%, 5%, 8%, 10%, and 12%. After the system was equilibrated for at least 100,000 femtoseconds, an arabinan molecule composed of 8 arabinose rings was added …


Renal Artery Stent Fatigue Test, Braden Cooper, Munir Eltal, Jennifer Hawthorne, Ashley Schaefer Jun 2015

Renal Artery Stent Fatigue Test, Braden Cooper, Munir Eltal, Jennifer Hawthorne, Ashley Schaefer

Mechanical Engineering

In today’s world of medical innovation, regulations and requirements set by organizations such as the Food and Drug Administration (FDA), the International Organization for Standardization (ISO), and ASTM International (American Society for Testing and Materials) can inhibit rapid innovation by demanding rigorous testing of new designs. For arterial stents, the standard is that each design must be tested to simulate 10 years of life in an environment congruent to an in vivo environment. Endologix in Irvine, California develops and manufactures minimally invasive treatments for aortic diseases, with a focus on stent grafts for the treatment of abdominal aortic aneurysms (AAA). …


Self-Contained Breathing Apparatus For Firefighter With A Permanent Stoma, Jason Delgadillo, Aaron Wheeler, Zachary Wishbow Jun 2015

Self-Contained Breathing Apparatus For Firefighter With A Permanent Stoma, Jason Delgadillo, Aaron Wheeler, Zachary Wishbow

Biomedical Engineering

The purpose of this project was to create a unique SCBA (self-contained breathing apparatus) for a firefighter named Chris Gauer. This prototype consists of a SCBA headgear connected to a polycarbonate-formed stoma mask with a medical-grade sanitary silicone hose.


Design And Fabrication Of A Multifunctional Nano-On-Micro Delivery System, Alexandra D. Bannerman May 2015

Design And Fabrication Of A Multifunctional Nano-On-Micro Delivery System, Alexandra D. Bannerman

Electronic Thesis and Dissertation Repository

The treatment of tumours using microbeads for embolization and drug delivery is a widely used, but often ineffective, technique. In this work, we aim to produce microbeads for this application with four main improvements: visibility, target-ability, degradability, and an alternative route for drug loading. We accomplish this through the fabrication of ~100μm diameter microbeads composed of poly(vinyl alcohol) (PVA), iron oxide nanoparticles, and cellulose nanocrystals (CNC) using a custom-designed microchannel system. Characterization demonstrated that microbeads were magnetic, as well as visible under clinical CT. Separately, the dissolution of PVA iron oxide hydrogels exposed to different environmental conditions was studied. Iron …