Open Access. Powered by Scholars. Published by Universities.®

Aeronautical Vehicles Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Aeronautical Vehicles

Predictive Capabilities Of Laminar-Turbulent Transition Models For Aerodynamics Applications, Jared Alexander Carnes Aug 2022

Predictive Capabilities Of Laminar-Turbulent Transition Models For Aerodynamics Applications, Jared Alexander Carnes

Doctoral Dissertations

Laminar-turbulent boundary-layer transition has a demonstrable impact on the performance of aerospace vehicles. The ability to accurately predict transition is integral to properly capturing relevant flow physics. Traditionally, computational fluid dynamics simulations are performed fully turbulent, meaning that laminar flow is neglected. This, however, can result in errant predictions of vehicle performance as quantities such as skin-friction drag may be overpredicted. Resultingly, development of Reynolds-averaged Navier-Stokes transition models has seen significant attention over the last decades in order to model transition and realize the performance improvements of laminar flow.

In this work, the behaviors of several different transition-prediction methods are …


A Study Of The Utilization Of Panel Method For Low Aspect Ratio Wing Analysis, William Barton D. Newey Jun 2020

A Study Of The Utilization Of Panel Method For Low Aspect Ratio Wing Analysis, William Barton D. Newey

Master's Theses

This study demonstrates the applicability of using a modified application strategy of panel method to analyze low aspect ratio wings at preliminary design phases. Conventional panel methods fail to capture the leading edge vortex (LEV) that is shed by wings with low aspect ratios, typically below 2 depending on planform. This aerodynamic phenomenon contributes to a significant amount of the lift of these wings and the result is a drastic underestimation of the lift characteristics when analyzed by conventional panel method. To capture the effect of the leading edge vortex, a panel method code was used with an extended definition …


Design And Performance Of Circulation Control Geometries, Rory Martin Golden Mar 2013

Design And Performance Of Circulation Control Geometries, Rory Martin Golden

Master's Theses

With the pursuit of more advanced and environmentally-friendly technologies of today’s society, the airline industry has been pushed further to investigate solutions that will reduce airport noise and congestion, cut down on emissions, and improve the overall performance of aircraft. These items directly influence airport size (runway length), flight patterns in the community surrounding the airport, cruise speed, and many other aircraft design considerations which are setting the requirements for next generation aircraft. Leading the research in this movement is NASA, which has set specific goals for the next generation regional airliners and has categorized the designs that meet the …


3d Cfd On An Open Wheel Race Car Front Wing In Ground Effects, Thomas A. Price Jul 2011

3d Cfd On An Open Wheel Race Car Front Wing In Ground Effects, Thomas A. Price

Aerospace Engineering

The purpose of the report is to investigate the ability of the Fluent 6.3 k-ε Realizable turbulence model with standard wall functions to model the flow around the front wing of Cal Poly’s 2008 Formula SAE car. The three primary areas of interest are ground effects, the wing wheel interaction, and the wing tip vortices. Fluent was successful at modeling the increase suction from the ground effects, and the upwash due to the wing tip vortices. The results also displayed how the high pressure region in front of the tire propagates forward and interacts with the pressure distribution around the …


Cfd As Applied To The Design Of Short Takeoff And Landing Vehicles Using Circulation Control, Tyler M. Ball Jun 2008

Cfd As Applied To The Design Of Short Takeoff And Landing Vehicles Using Circulation Control, Tyler M. Ball

Master's Theses

The ability to predict the distance required for an aircraft to takeoff is an essential component of aircraft design. It involves aspects related to each of the major aircraft systems: aerodynamics, propulsion, configuration, structures, and stability and control. For an aircraft designed for short takeoffs and landings (STOL), designing the aircraft to provide a short takeoff distance, or more precisely the balanced field length (BFL), often leads to the use of a powered lift technique such as circulation control (CC). Although CC has been around for many years, it has never been used on a production aircraft. This is in …