Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2020

Nanoparticles

Discipline
Institution
Publication
Publication Type

Articles 1 - 30 of 46

Full-Text Articles in Engineering

Controlled Membrane Remodeling By Nanospheres And Nanorods: Experiments Targeting The Design Principles For Membrane-Based Materials, Sarah Zuraw-Weston Dec 2020

Controlled Membrane Remodeling By Nanospheres And Nanorods: Experiments Targeting The Design Principles For Membrane-Based Materials, Sarah Zuraw-Weston

Doctoral Dissertations

In this thesis we explore two experimental systems probing the interactions of nanoparticles with lipid bilayer membranes. Inspired by the ability of cell membranes to alter their shape in response to bound particles, we report two experimental studies: one of nanospheres the other of long, slender nano-rods binding to lipid bilayer vesicles and altering the membrane shape. Our work illuminates the role of particle geometry, particle concentration, adhesion strength and membrane tension in how membrane morphology is determined. We combine giant unilamellar vesicles with oppositely charged nanoparticles, carefully tuning adhesion strength, membrane tension and particle concentration. In the case of …


The Varied Thermal Response Of Magnetic Iron-Oxide Nanoparticles During Induction Heating In Liquid And Solid-Liquid Phase Change Mediums, Joshua Tompkins Dec 2020

The Varied Thermal Response Of Magnetic Iron-Oxide Nanoparticles During Induction Heating In Liquid And Solid-Liquid Phase Change Mediums, Joshua Tompkins

Graduate Theses and Dissertations

This study investigates the induction heating response of uncapped iron oxide nanoparticles sonically dispersed as a nanofluid and mechanically distributed in solid phase change materials. The nanoparticles examined have a mean diameter of 14.42 nm and are magnetically heated in an alternating magnetic field at an amplitude of 72.6 kA/m at frequencies of 217, 303, and 397 kHz. Nanoparticle characterization was undertaken through transition electron microscopy, x-ray diffraction, and dynamic light scattering when in suspension. Carrier fluids were characterized through viscosity, heat capacity, and density measurements which were used in the calorimetric calculation of the specific absorption rate (SAR) of …


Direct Solar Absorption Nanoparticle Doped Membranes For A Hybrid Membrane Distillation And Photovoltaic Cell, Alejandro Espejo Sanchez Dec 2020

Direct Solar Absorption Nanoparticle Doped Membranes For A Hybrid Membrane Distillation And Photovoltaic Cell, Alejandro Espejo Sanchez

Boise State University Theses and Dissertations

The growing demand for clean water supplies is driving the need for an innovative approach of water desalination. Developing a method for treating water with high salinities is possible with membrane distillation (MD). Additionally, MD is very attractive for pairing with solar energy due to the low temperature requirements. The integration of a membrane distillation system with a photovoltaic (PV) system will result in the co-production of electricity and clean water, thereby improving the economics of MD. Such a hybrid system will directly absorb thermal energy in the membrane for desalination while taking advantage of the spectrally selective nature of …


Erosive Wear Properties Of Za-27 Alloy-Based Nanocomposites: Influence Of Type, Amount, And Size Of Nanoparticle Reinforcements, Aleksandar Vencl, Ilija Bobić, Biljana Bobić, Kristina Jakimovska, Petr Svoboda, Mara Kandeva Oct 2020

Erosive Wear Properties Of Za-27 Alloy-Based Nanocomposites: Influence Of Type, Amount, And Size Of Nanoparticle Reinforcements, Aleksandar Vencl, Ilija Bobić, Biljana Bobić, Kristina Jakimovska, Petr Svoboda, Mara Kandeva

Friction

Metal matrix nanocomposites (MMnCs) comprise a metal matrix filled with nanosized reinforcements with physical and mechanical properties that are very different from those of the matrix. In ZA-27 alloy-based nanocomposites, the metal matrix provides ductility and toughness, while usually used ceramic reinforcements give high strength and hardness. Tested ZA-27 alloy-based nanocomposites, reinforced with different types (SiC and Al2O3), amounts (0.2 wt.%, 0.3 wt.%, and 0.5 wt.%) and sizes (25 nm, 50 nm, and 100 nm) of nanoparticles were produced through the compocasting process with mechanical alloying pre-processing (ball milling). It was previously shown that the presence of nanoparticles in ZA-27 …


Metal-Containing Nanomaterials As Lubricant Additives: State-Of-The-Art And Future Development, Igor E. Uflyand, Vladimir A. Zhinzhilo, Victoria E. Burlakova Oct 2020

Metal-Containing Nanomaterials As Lubricant Additives: State-Of-The-Art And Future Development, Igor E. Uflyand, Vladimir A. Zhinzhilo, Victoria E. Burlakova

Friction

This review focuses on the effect of metal-containing nanomaterials on tribological performance in oil lubrication. The basic data on nanolubricants based on nanoparticles of metals, metal oxides, metal sulfides, nanocomposities, and rare-earth compounds are generalized. The influence of nanoparticle size, morphology, surface functionalization, and concentration on friction and wear is analyzed. The lubrication mechanisms of nanolubricants are discussed. The problems and prospects for the development of metal-containing nanomaterials as lubricant additives are considered. The bibliography includes articles published during the last five years.


Lanthanide Nanoparticles As Contrast Agents For In Vivo Dual Energy Microcomputed Tomography Of The Mouse Vasculature, Charmainne Cruje Oct 2020

Lanthanide Nanoparticles As Contrast Agents For In Vivo Dual Energy Microcomputed Tomography Of The Mouse Vasculature, Charmainne Cruje

Electronic Thesis and Dissertation Repository

Dual energy (DE) computed tomography (CT) has the capability to influence medicine and pre-clinical research by providing quantitative information that can detect nascent lesions, identify perfusion restoration or inhomogeneities within tissues, and recognize the presence of calcium deposits. A wide variety of instrumentation techniques and scan protocols have been developed for DE CT, with a common goal of acquiring a pair of images that reports the attenuation of a given volume to two different x-ray distributions. While DE image acquisition has benefitted from technical advancements in CT, the contrast agents that are used are still predominantly composed of iodinated small …


Point-Of-Care Devices For Therapeutic, Medical And Environmental Applications, Alisha Prasad Sep 2020

Point-Of-Care Devices For Therapeutic, Medical And Environmental Applications, Alisha Prasad

LSU Doctoral Dissertations

Point-of-care testing (POCT) or Point-of-use (POU) devices or technologies are defined as testing aids that are capable for onsite use or testing. The key advantages of POCT are low sample volume, quick onsite diagnosis, high accuracy, and cost-effectiveness. POCT has the potential and the benefits to facilitate better health care management by rapid routine diagnosis and monitoring. To reach this goal, several researchers as well as the healthcare industry over a few years have conducted cutting edge research to bring science to technology by developing smart diagnostic devices capable of performing as per patient profiles and make personalized health care …


Effect Of Nanofiller Coating And Loading On Facial Elastomer Physical Properties, Rahmi K. Aulia Aug 2020

Effect Of Nanofiller Coating And Loading On Facial Elastomer Physical Properties, Rahmi K. Aulia

Theses & Dissertations

Current materials used for facial prostheses are far from being desirable, and improved properties with “skin-like” feel are needed. This study evaluates property changes induced by sequential additions of uncoated and hydrophobic-coated nano-SiO2 to polydimethylsiloxane (PDMS) and compares them with those measured for conventional submicron SiO2-filled materials. Each filler type was sequentially added to vinyl-terminated PDMS at 0%, 0.5%, 5%, 10%, and 15% by weight. Tensile, tear, Durometer hardness, translucency and viscoelastic properties were evaluated, with hardness and translucency also evaluated following 3000 hours of outdoor weathering. Results demonstrated that 15% coated nano-SiO2-filled PDMS materials …


Nanoceria Distribution And Effects Are Mouse-Strain Dependent, Robert A. Yokel, Michael T. Tseng, D. Allan Butterfield, Matthew L. Hancock, Eric A. Grulke, Jason M. Unrine, Arnold J. Stromberg, Alan K. Dozier, Uschi M. Graham Aug 2020

Nanoceria Distribution And Effects Are Mouse-Strain Dependent, Robert A. Yokel, Michael T. Tseng, D. Allan Butterfield, Matthew L. Hancock, Eric A. Grulke, Jason M. Unrine, Arnold J. Stromberg, Alan K. Dozier, Uschi M. Graham

Pharmaceutical Sciences Faculty Publications

Prior studies showed nanoparticle clearance was different in C57BL/6 versus BALB/c mice, strains prone to Th1 and Th2 immune responses, respectively. Objective: Assess nanoceria (cerium oxide, CeO2 nanoparticle) uptake time course and organ distribution, cellular and oxidative stress, and bioprocessing as a function of mouse strain. Methods: C57BL/6 and BALB/c female mice were i.p. injected with 10 mg/kg nanoceria or vehicle and terminated 0.5 to 24 h later. Organs were collected for cerium analysis; light and electron microscopy with elemental mapping; and protein carbonyl, IL-1β, and caspase-1 determination. Results: Peripheral organ cerium significantly increased, generally more …


Fluidization Characteristics Of Group C+ Particles: Fine Powder With Nanoparticle Modulation, Yandaizi Zhou Jul 2020

Fluidization Characteristics Of Group C+ Particles: Fine Powder With Nanoparticle Modulation, Yandaizi Zhou

Electronic Thesis and Dissertation Repository

Geldart Group C particles become increasingly attractive in industry because of their small particle sizes and large specific surface areas. The main challenge in the flow and fluidization of Geldart Group C particles is their cohesive nature due to strong interparticle forces. The “nanoparticle modulation” technique was adopted to reduce the interparticle forces of Group C particles and thus significantly improved their flow and fluidization quality. Group C+ particles, a new type of fine particles with drastically reduced or insignificant interparticle forces, were created using the nano-modulation technique.

Fundamental studies provided a comprehensive understanding of the fluidization quality of …


Enhanced Water Electrolysis: Effect Of Temperature On The Oxygen Evolution Reaction At Cobalt Oxide Nanoparticles Modified Glassy Carbon Electrodes, Aya Akl, Hany A. Elazab, Mohamed A. Sadek, Mohamed S. El-Deab Jul 2020

Enhanced Water Electrolysis: Effect Of Temperature On The Oxygen Evolution Reaction At Cobalt Oxide Nanoparticles Modified Glassy Carbon Electrodes, Aya Akl, Hany A. Elazab, Mohamed A. Sadek, Mohamed S. El-Deab

Chemical Engineering

Water splitting producing hydrogen and oxygen gases appears promising in view of the increasing need of renewable energy sources and storage strategies. Investigation of stable and highly efficient electrocatalysts for oxygen evolution reaction (OER) is targeted in this study at cobalt oxide nanoparticle modified glassy carbon (nano-CoOx/GC) electrodes. The effect of the preparation (Tp) and measuring temperature (Tm) on the electrocatalytic activity of nano-CoOx/GC towards the OER is investigated under various operating conditions. Linear sweep voltammetry (LSV), cyclic voltammetry (CV) as well as SEM and XRD techniques were used to probe the electrocatalytic and morphological characteristics of nano-CoOx prepared under …


Nanohybrid Membrane Synthesis With Phosphorene Nanoparticles: A Study Of The Addition, Stability And Toxicity, Joyner Eke, Philip Alexander Mills, Jacob Ryan Page, Garrison P. Wright, Olga V. Tsyusko, Isabel C. Escobar Jul 2020

Nanohybrid Membrane Synthesis With Phosphorene Nanoparticles: A Study Of The Addition, Stability And Toxicity, Joyner Eke, Philip Alexander Mills, Jacob Ryan Page, Garrison P. Wright, Olga V. Tsyusko, Isabel C. Escobar

Center of Membrane Sciences Faculty Publications

Phosphorene is a promising candidate as a membrane material additive because of its inherent photocatalytic properties and electrical conductance which can help reduce fouling and improve membrane properties. The main objective of this study was to characterize structural and morphologic changes arising from the addition of phosphorene to polymeric membranes. Here, phosphorene was physically incorporated into a blend of polysulfone (PSf) and sulfonated poly ether ether ketone (SPEEK) doping solution. Protein and dye rejection studies were carried out to determine the permeability and selectivity of the membranes. Since loss of material additives during filtration processes is a challenge, the stability …


Synthesis, Self-Assembly And High-Pressure Properties Of Nanoparticles And Hybrid Nanocomposites, Lingyao Meng Jul 2020

Synthesis, Self-Assembly And High-Pressure Properties Of Nanoparticles And Hybrid Nanocomposites, Lingyao Meng

Nanoscience and Microsystems ETDs

Nanoparticles have gained significant scientific interests owing to their unique structural dimensions, size- and shape-tunable properties, and numerous fascinating applications, from opto-electronics, sensor devices, to energy, environmental, and medical fields. Furthermore, the synergistic integration of other materials, including organic polymers, with nanoparticles provides new opportunities and strategies to obtain nanocomposites with superior properties and functionalities. While there is already significant research on the synthesis and characterizations of nanoparticles and hybrid nanocomposites, some research questions, such as how to design and control the interfacial morphology in polymer/nanoparticle hybrid nanocomposites, how to synthesize metal- organic framework (MOF) nanoparticles in well-defined and uniform …


Enhanced Water Electrolysis: Effect Of Temperature On The Oxygen Evolution Reaction At Cobalt Oxide Nanoparticles Modified Glassy Carbon Electrodes, Aya Akl, Hany A. Elazab, Mohamed A. Sadek, Mohamed S. El-Deab Jul 2020

Enhanced Water Electrolysis: Effect Of Temperature On The Oxygen Evolution Reaction At Cobalt Oxide Nanoparticles Modified Glassy Carbon Electrodes, Aya Akl, Hany A. Elazab, Mohamed A. Sadek, Mohamed S. El-Deab

Chemical Engineering

Water splitting producing hydrogen and oxygen gases appears promising in view of the increasing need of renewable energy sources and storage strategies. Investigation of stable and highly efficient electrocatalysts for oxygen evolution reaction (OER) is targeted in this study at cobalt oxide nanoparticle modified glassy carbon (nano-CoOx/GC) electrodes. The effect of the preparation (Tp) and measuring temperature (Tm) on the electrocatalytic activity of nano-CoOx/GC towards the OER is investigated under various operating conditions. Linear sweep voltammetry (LSV), cyclic voltammetry (CV) as well as SEM and XRD techniques were used to probe the electrocatalytic and morphological characteristics of nano-CoOx prepared under …


Bijels Made By Solvent Transfer Induced Phase Separation: Formation Principles And Transport, Stephen Boakye-Ansah Jun 2020

Bijels Made By Solvent Transfer Induced Phase Separation: Formation Principles And Transport, Stephen Boakye-Ansah

Theses and Dissertations

Bijels are made of non-equilibrium particle-stabilized emulsions with a bicontinuous arrangement of the constituent fluid phases. They spontaneously form through arrested spinodal decomposition in mixtures of partially miscible liquids and neutrally wetting colloidal particles. Soon after their discovery over 10 years ago, Prof. Mike Cates, Lucasian Professor of Mathematics, predicted their future use as continuously operated cross-flow reactors for chemical reactions between immiscible reactants.

Towards this goal, work in this thesis focuses on designing bijels via Solvent Transfer Induced Phase Separation (STrIPS) for microfluidic transport applications. Structure-function relationships of STrIPS bijels stabilized by silane functionalized nanoparticles are developed. In-situ surfactant …


Hyaluronic Acid Coated Targeted Lipid Micellar Nanoparticle As A Delivery Vehicle For Lapatinib And Ketoconazole In Egfr Mutated Lung Cancer, Nadia Tasnim Ahmed Jun 2020

Hyaluronic Acid Coated Targeted Lipid Micellar Nanoparticle As A Delivery Vehicle For Lapatinib And Ketoconazole In Egfr Mutated Lung Cancer, Nadia Tasnim Ahmed

USF Tampa Graduate Theses and Dissertations

Background: According to the American Cancer Society, lung cancer was accountable for over 142,000 deaths in the USA in 2019. Common mutations related to lung cancer mainly occur in TP53, EGFR, and KRAS genes. Lapatinib is a small molecule tyrosine kinase inhibitor which acts reversibly on both epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2). Overexpression of EGFR leads to increased production and signaling of proteins that cause upregulation of cellular proliferation, cholesterol synthesis and resistance to apoptosis. Ketoconazole is an imidazole antifungal agent which works principally by inhibiting the enzyme cytochrome P450 14α-demethylase (CYP51A1) …


In Vivo Biosynthesis Of Inorganic Nanomaterials Using Eukaryotes - A Review, Ashiqur Rahman, Julia Lin, Francisco E. Jaramillo, Dennis A. Bazylinski, Clayton Jeffryes, Si Amar Dahoumane Jun 2020

In Vivo Biosynthesis Of Inorganic Nanomaterials Using Eukaryotes - A Review, Ashiqur Rahman, Julia Lin, Francisco E. Jaramillo, Dennis A. Bazylinski, Clayton Jeffryes, Si Amar Dahoumane

Life Sciences Faculty Research

Bionanotechnology, the use of biological resources to produce novel, valuable nanomaterials, has witnessed tremendous developments over the past two decades. This eco-friendly and sustainable approach enables the synthesis of numerous, diverse types of useful nanomaterials for many medical, commercial, and scientific applications. Countless reviews describing the biosynthesis of nanomaterials have been published. However, to the best of our knowledge, no review has been exclusively focused on the in vivo biosynthesis of inorganic nanomaterials. Therefore, the present review is dedicated to filling this gap by describing the many different facets of the in vivo biosynthesis of nanoparticles (NPs) using living eukaryotic …


Understanding The Effects Of Plasma Assisted Nanoparticle Deposition For The Enhancement Of Optical And Electrochemical Response, Apurva Sonawane Jun 2020

Understanding The Effects Of Plasma Assisted Nanoparticle Deposition For The Enhancement Of Optical And Electrochemical Response, Apurva Sonawane

FIU Electronic Theses and Dissertations

In this work, the effects of atmospheric plasma treatment on morphology, optical, and electrochemical properties of 10 ± 3nm spherical silver and gold nanoparticles (AgNPs and AuNPs) functionalized substrates were studied. The nanoparticles (NPs) were deposited on substrates by drop-casting, aerosol spray, and a low-temperature atmospheric plasma-assisted aerosol jet. The reduction in nanoparticle size was observed, which was explained by the redox reaction that occurs on the nanoparticle surface. This phenomenon was evident by the presence of AgO, Ag2O, and AuOx Raman peaks in the treated sample. The surface charge changed as a result of plasma treatment, …


Cancer Biomarker Detection In Human Plasma By Integrating Surface Acoustic Wave And Metal-Enhanced Fluorescence, Yuqi Huang Jun 2020

Cancer Biomarker Detection In Human Plasma By Integrating Surface Acoustic Wave And Metal-Enhanced Fluorescence, Yuqi Huang

USF Tampa Graduate Theses and Dissertations

This thesis includes data and discussion about the technique of metal-enhanced fluorescence (MEF) to lower the detection limit of carcinoembryonic antigen (CEA). The detection limit goes down to 100pg/mL level when using MEF substrate made by rapid thermally annealed silver film covered by silica, which has great promise in diagnosing certain types of cancer that uses CEA as detection biomarker, such as pancreatic cancer and colon cancer. To further address the issue of background noises from non-specifically bound proteins (NSB) in complex media, such as plasma, serum, urine and blood, MEF is integrated with surface acoustic wave (SAW) streaming in …


Water Purification Device And A Method Of Decontaminating A Water Supply, Dibakar Bhattacharyya, Li Xiao Jun 2020

Water Purification Device And A Method Of Decontaminating A Water Supply, Dibakar Bhattacharyya, Li Xiao

Chemical and Materials Engineering Faculty Patents

A water purification device is provided in the form of a hydrogel matrix containing immobilized nanoparticles that are directly synthesized in-situ in the hydrogel matrix. The hydrogel matrix is temperature sensitive, such that swelling draws in pollutants that are captured by the nanoparticles, while deswelling releases purified water. A related method of decontaminating the water supply contaminated with a target pollutant is also disclosed.


Geometric Optimization Of Plasmonic Nanostructure Arrays On Mwir Hgcdte (Mct), Nagendrababu Vanamala, Kevin C. Santiago, Naresh C. Das, Samuel Keith Hargrove Jun 2020

Geometric Optimization Of Plasmonic Nanostructure Arrays On Mwir Hgcdte (Mct), Nagendrababu Vanamala, Kevin C. Santiago, Naresh C. Das, Samuel Keith Hargrove

Mechanical and Manufacturing Engineering Faculty Research

Mercury Cadmium Telluride (MCT) is a primary absorber material used in most infrared (IR) detection technologies. Our previous studies show that the optical absorbance profile of MCT in the mid-infrared region can be enhanced by 13% under ambient conditions via integrating periodic Indium Tin Oxide (ITO) nanostructures. Here, we focus on the geometrical parameterization and optimization of ITO nanostructure arrays. We simulate several types of geometries, their corresponding effective absorption profiles, E-field distribution, and optimal geometric parameters. This work may lead to improved light collection and absorption edge engineering, as MCT continues to be the material of choice in IR …


Investigation Of New Forward Osmosis Draw Agents And Prioritization Of Recent Developments Of Draw Agents Using Multi-Criteria Decision Analysis, Jodie Wei Yu Jun 2020

Investigation Of New Forward Osmosis Draw Agents And Prioritization Of Recent Developments Of Draw Agents Using Multi-Criteria Decision Analysis, Jodie Wei Yu

Master's Theses

Forward osmosis (FO) is an emerging technology for water treatment due to their ability to draw freshwater using an osmotic pressure gradient across a semi-permeable membrane. However, the lack of draw agents that could both produce reasonable flux and be separated from the draw solution at a low cost stand in the way of widespread implementation. This study had two objectives: evaluate the performance of three materials — peptone, carboxymethyl cellulose (CMC), and magnetite nanoparticles (Fe3O4 NPs) — as potential draw agents, and to use multi-criteria decision matrices to systematically prioritize known draw agents from literature for …


A Novel Approach For Using Silica Nanoparticles In A Proppant Pack To Fixate Coal Fines, Faisal Ur Rahman Awan, Alireza Keshavarz, Hamed Akhondzadeh, Sarmad Al-Anssari, Stefan Iglauer May 2020

A Novel Approach For Using Silica Nanoparticles In A Proppant Pack To Fixate Coal Fines, Faisal Ur Rahman Awan, Alireza Keshavarz, Hamed Akhondzadeh, Sarmad Al-Anssari, Stefan Iglauer

Research outputs 2014 to 2021

Hydraulic fracturing operations in coal seam gas reservoirs are highly prone to release coal fines. Coal fines inevitably cause mechanical pump failure and permeability damage as a result of their hydrophobicity, aggregation in the system and pore-throat blockage. One approach to affix these coal fines at their source, and to retard generation, is to introduce a nanoparticle-treated proppant pack. Thus, this research explores coal fines retention (known as adsorption) in a proppant pack using nanoparticles. In the study, the electrolytic environment, pH, flow rate, temperature and pressure were kept constant, while the variables were concentration of silica nanoparticles (0–0.1 wt%) …


Ultrafine Particle-Particle And Particle-Ion Interactions In Aerosol Reactors, Girish Sharma May 2020

Ultrafine Particle-Particle And Particle-Ion Interactions In Aerosol Reactors, Girish Sharma

McKelvey School of Engineering Theses & Dissertations

Aerosol science and technology has enabled the material synthesis of ‘good’ nanoparticles, as well as, addressed the problem of air pollution by developing particle capture technologies for ‘bad’ nanoparticles. For material synthesis at industrial scale, flame aerosol reactors are extensively used for large-scale industrial production of ‘good’ nanoparticles. But, there exists a knowledge gap in understanding the early stages (1-10 nm) of particle formation and growth, which is necessary for tailoring the synthesized nanoparticles’ properties. To achieve this goal, measurement tools for the characterization of 1-10 nm particles are quintessential. On the other hand, to capture ‘bad’ particles, existing control …


Development Of Fluorescent Hyaluronic Acid Nanoparticles For Intraoperative Tumor Detection, Nicholas E. Wojtynek May 2020

Development Of Fluorescent Hyaluronic Acid Nanoparticles For Intraoperative Tumor Detection, Nicholas E. Wojtynek

Theses & Dissertations

Surgical resection remains to be the primary treatment for the majority of solid tumors, including breast cancer. The complete removal of the primary tumor, local metastases, and metastatic lymph nodes dramatically improve a patient’s treatment outcome and prognosis. Nevertheless, surgeons are limited to tactile and visual cues in distinguishing malignant and healthy tissue. This can result in a positive surgical margin (PSM), which occurs when tumor goes undetected and is left behind in the surgical cavity. PSMs decreases a patient’s prognosis and necessitate additional treatment in the form of surgery, radiation, and chemotherapy. An emerging imaging modality, known as fluorescence-guided …


Development Of Vegetable Oil Based Nano-Lubricants, Vicente Cortes May 2020

Development Of Vegetable Oil Based Nano-Lubricants, Vicente Cortes

Theses and Dissertations

Nowadays, the depletion of crude oil reserves in the world and the global concern in protecting the environment from contamination have renewed interest in developing environment friendly lubricants derived from alternative sources such as vegetable oils. Mineral oil is the most common lubricant, however, it also has poor biodegradable properties. Vegetable oils exhibit good viscosity index, flash point, pour point, tribological properties, and are biodegradable. Furthermore, the use of nanoparticles as additives has shown to improve anti wear and anti-friction properties of the base lubricant. The present research project will evaluate experimentally the rheological and tribological behavior of coconut oil, …


Optics Of Two-Dimensional Materials Used As Substrates For Nanoparticle-Based Devices, Reagan Newman May 2020

Optics Of Two-Dimensional Materials Used As Substrates For Nanoparticle-Based Devices, Reagan Newman

Chancellor’s Honors Program Projects

No abstract provided.


Antibacterial And Anticancer Activity Of Hydrothermally-Synthesized Zinc Oxide Nanomaterials Using Natural Extracts Of Neem, Pepper And Turmeric As Solvent Media, C. Abinaya, R. Manjula Devi, P. Suresh, N. Balasubramanian, N. Muthaiya, N. D. Kannan, J. Annaraj, V. Shanmugaiah, Joshua Pearce, P. Shanmugapriya, J. Mayandi Apr 2020

Antibacterial And Anticancer Activity Of Hydrothermally-Synthesized Zinc Oxide Nanomaterials Using Natural Extracts Of Neem, Pepper And Turmeric As Solvent Media, C. Abinaya, R. Manjula Devi, P. Suresh, N. Balasubramanian, N. Muthaiya, N. D. Kannan, J. Annaraj, V. Shanmugaiah, Joshua Pearce, P. Shanmugapriya, J. Mayandi

Michigan Tech Publications

A novel and simple wet chemical hydrothermal synthesis method was employed in the preparation of zinc oxide (ZnO) nanoparticles using neem (N), pepper (P) and turmeric (T) extracts as solvent media. The structural and optical properties as well as the antibacterial and anticancer properties of all the samples (ZnO, N/ZnO, P/ZnO, T/ZnO and NPT/ZnO) were characterized and analyzed. Solvent media was found to have an effect on both the size and the morphology of the nanoparticles, which in turn effected their optical and cytotoxic properties. The colony forming unit (CFU) assays were done for E. coli, S. aureus and S. …


Synthetic Lethality In Pediatric Brain Cancer Cells By Optimized Plga Nanoparticles And Drug Combinations, Megan Ruckman, Megan Otte, Forrest Kievit Apr 2020

Synthetic Lethality In Pediatric Brain Cancer Cells By Optimized Plga Nanoparticles And Drug Combinations, Megan Ruckman, Megan Otte, Forrest Kievit

UCARE Research Products

Here we test drugs effectiveness to inhibit various DNA repair pathways with the purpose of sensitizing cancer cells to radiotherapy. We work on optimizing delivery of DNA repair pathway inhibiting drugs by the use of PLGA nanoparticles.


Assessment Of Nanoparticle Accumulation With Dynamic Contrast-Enhanced Magnetic Resonance Imaging, Hunter Miller Apr 2020

Assessment Of Nanoparticle Accumulation With Dynamic Contrast-Enhanced Magnetic Resonance Imaging, Hunter Miller

Department of Agricultural and Biological Systems Engineering: Dissertations, Theses, and Student Research

Nanoparticle (NP)-based therapeutics promise to improve medicine in multiple areas by increasing target engagement. To date, most research has focused on cancer, aiming to increase uptake using the enhanced permeability and retention (EPR) effect. Despite pre-clinical success in proof-of-concept studies, understanding of the fundamental interactions between NP and biological systems that govern outcomes remains incomplete. To realize the potential of NPs for cancer therapeutics, and to expand their application into other diseases, the roles physicochemical properties play in NP uptake must be better understood. Some investigations have been performed into the effects of size and surface charge on uptake into …