Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 84

Full-Text Articles in Engineering

Work-In-Progress: Augmented Reality System For Vehicle Health Diagnostics And Maintenance, Yuzhong Shen, Anthony W. Dean, Rafael Landaeta Jun 2020

Work-In-Progress: Augmented Reality System For Vehicle Health Diagnostics And Maintenance, Yuzhong Shen, Anthony W. Dean, Rafael Landaeta

Electrical & Computer Engineering Faculty Publications

This paper discusses undergraduate research to develop an augmented reality (AR) system for diagnostics and maintenance of the Joint Light Tactical Vehicle (JLTV) employed by U.S. Army and U.S. Marine Corps. The JLTV’s diagnostic information will be accessed by attaching a Bluetooth adaptor (Ford Reference Vehicle Interface) to JLTV’s On-board diagnostics (OBD) system. The proposed AR system will be developed for mobile devices (Android and iOS tablets and phones) and it communicates with the JLTV’s OBD via Bluetooth. The AR application will contain a simplistic user interface that reads diagnostic data from the JLTV, shows vehicle sensors, and allows users …


Generative Adversarial Networks For Visible To Infrared Video Conversion, Mohammad Shahab Uddin, Jiang Li, Chiman Kwan (Ed.) Jan 2020

Generative Adversarial Networks For Visible To Infrared Video Conversion, Mohammad Shahab Uddin, Jiang Li, Chiman Kwan (Ed.)

Electrical & Computer Engineering Faculty Publications

Deep learning models are data driven. For example, the most popular convolutional neural network (CNN) model used for image classification or object detection requires large labeled databases for training to achieve competitive performances. This requirement is not difficult to be satisfied in the visible domain since there are lots of labeled video and image databases available nowadays. However, given the less popularity of infrared (IR) camera, the availability of labeled infrared videos or image databases is limited. Therefore, training deep learning models in infrared domain is still challenging. In this chapter, we applied the pix2pix generative adversarial network (Pix2Pix GAN) …


Distributed Strategy For Power Re-Allocation In High Performance Applications, Vaibhav Sundriyal, Masha Sosonkina Jan 2020

Distributed Strategy For Power Re-Allocation In High Performance Applications, Vaibhav Sundriyal, Masha Sosonkina

Electrical & Computer Engineering Faculty Publications

To improve the power consumption of parallel applications at the runtime, modern processors provide frequency scaling and power limiting capabilities. In this work, a runtime strategy is proposed to distribute a given power allocation among the cluster nodes assigned to the application while balancing their performance change. The strategy operates in a timeslice-based manner to estimate the current application performance and power usage per node followed by power redistribution across the nodes. Experiments, performed on four nodes (112 cores) of a modern computing platform interconnected with Infiniband showed that even a significant power budget reduction of 20% may result in …


Deepmag+ : Sniffing Mobile Apps In Magnetic Field Through Deep Learning, Rui Ning, Cong Wang, Chunsheng Xin, Jiang Li, Hongyi Wu Jan 2020

Deepmag+ : Sniffing Mobile Apps In Magnetic Field Through Deep Learning, Rui Ning, Cong Wang, Chunsheng Xin, Jiang Li, Hongyi Wu

Electrical & Computer Engineering Faculty Publications

This paper reports a new side-channel attack to smartphones using the unrestricted magnetic sensor data. We demonstrate that attackers can effectively infer the Apps being used on a smartphone with an accuracy of over 80%, through training a deep Convolutional Neural Networks (CNN). Various signal processing strategies have been studied for feature extractions, including a tempogram based scheme. Moreover, by further exploiting the unrestricted motion sensor to cluster magnetometer data, the sniffing accuracy can increase to as high as 98%. To mitigate such attacks, we propose a noise injection scheme that can effectively reduce the App sniffing accuracy to only …


Special Section Guest Editorial: Machine Learning In Optics, Jonathan Howe, Travis Axtell, Khan Iftekharuddin Jan 2020

Special Section Guest Editorial: Machine Learning In Optics, Jonathan Howe, Travis Axtell, Khan Iftekharuddin

Electrical & Computer Engineering Faculty Publications

This guest editorial summarizes the Special Section on Machine Learning in Optics.


Priority Based Routing And Link Scheduling For Cognitive Radio Networks, Peng Jiang, Mitchell Zhou, Song Wen Jan 2020

Priority Based Routing And Link Scheduling For Cognitive Radio Networks, Peng Jiang, Mitchell Zhou, Song Wen

Electrical & Computer Engineering Faculty Publications

To address the challenges caused by the time-varying rate requirement for multimedia communication sessions, we propose a Priority Based Routing and link Scheduling (PBRS) scheme for multi-hop cognitive radio networks. The objective is to minimize disruption to communication sessions due to channel switching as well as to minimize network resource consumption for multimedia applications based on a prioritized routing and resource allocation scheme. PBRS includes a priority based optimization formulation and an efficient algorithm to solve the problem. The main idea is to allocate the available resource to different types of services with their Quality of Experience (QoE) expectation as …


Computational Modeling Of Trust Factors Using Reinforcement Learning, C. M. Kuzio, A. Dinh, C. Stone, L. Vidyaratne, K. M. Iftekharuddin Jan 2019

Computational Modeling Of Trust Factors Using Reinforcement Learning, C. M. Kuzio, A. Dinh, C. Stone, L. Vidyaratne, K. M. Iftekharuddin

Electrical & Computer Engineering Faculty Publications

As machine-learning algorithms continue to expand their scope and approach more ambiguous goals, they may be required to make decisions based on data that is often incomplete, imprecise, and uncertain. The capabilities of these models must, in turn, evolve to meet the increasingly complex challenges associated with the deployment and integration of intelligent systems into modern society. Historical variability in the performance of traditional machine-learning models in dynamic environments leads to ambiguity of trust in decisions made by such algorithms. Consequently, the objective of this work is to develop a novel computational model that effectively quantifies the reliability of autonomous …


Transfer Learning Approach To Multiclass Classification Of Child Facial Expressions, Megan A. Witherow, Manar D. Samad, Khan M. Iftekharuddin Jan 2019

Transfer Learning Approach To Multiclass Classification Of Child Facial Expressions, Megan A. Witherow, Manar D. Samad, Khan M. Iftekharuddin

Electrical & Computer Engineering Faculty Publications

The classification of facial expression has been extensively studied using adult facial images which are not appropriate ground truths for classifying facial expressions in children. The state-of-the-art deep learning approaches have been successful in the classification of facial expressions in adults. A deep learning model may be better able to learn the subtle but important features underlying child facial expressions and improve upon the performance of traditional machine learning and feature extraction methods. However, unlike adult data, only a limited number of ground truth images exist for training and validating models for child facial expression classification and there is a …


End-To-End Learning Via A Convolutional Neural Network For Cancer Cell Line Classification, Darlington A. Akogo, Xavier-Lewis Palmer Jan 2019

End-To-End Learning Via A Convolutional Neural Network For Cancer Cell Line Classification, Darlington A. Akogo, Xavier-Lewis Palmer

Electrical & Computer Engineering Faculty Publications

Purpose: Computer vision for automated analysis of cells and tissues usually include extracting features from images before analyzing such features via various machine learning and machine vision algorithms. The purpose of this work is to explore and demonstrate the ability of a Convolutional Neural Network (CNN) to classify cells pictured via brightfield microscopy without the need of any feature extraction, using a minimum of images, improving work-flows that involve cancer cell identification.

Design/methodology/approach: The methodology involved a quantitative measure of the performance of a Convolutional Neural Network in distinguishing between two cancer lines. In their approach, they trained, validated and …


Wireless Sensor Networks For Smart Communications, Mu Zhou, Qilian Liang, Hongyi Wu, Weixiao Meng, Kunjie Xu Oct 2018

Wireless Sensor Networks For Smart Communications, Mu Zhou, Qilian Liang, Hongyi Wu, Weixiao Meng, Kunjie Xu

Electrical & Computer Engineering Faculty Publications

(First paragraph) In the first edition of the special issue titled “Wireless Sensor Networks for Smart Communications”, a total of 22 manuscripts were received and 6 of these were accepted. This issue demonstrated that network congestion, user mobility, and adjacent spectrum interference are the main reasons for the degradation ofcommunication quality inWireless Sensor Networks (WSNs).


Fast Identification Of High Utility Itemsets From Candidates, Jun-Feng Qu, Mengchi Liu, Chunsheng Xin, Zhongbo Wu Jan 2018

Fast Identification Of High Utility Itemsets From Candidates, Jun-Feng Qu, Mengchi Liu, Chunsheng Xin, Zhongbo Wu

Electrical & Computer Engineering Faculty Publications

High utility itemsets (HUIs) are sets of items with high utility, like profit, in a database. Efficient mining of high utility itemsets is an important problem in the data mining area. Many mining algorithms adopt a two-phase framework. They first generate a set of candidate itemsets by roughly overestimating the utilities of all itemsets in a database, and subsequently compute the exact utility of each candidate to identify HUIs. Therefore, the major costs in these algorithms come from candidate generation and utility computation. Previous works mainly focus on how to reduce the number of candidates, without dedicating much attention to …


Scalable And Fully Distributed Localization In Large-Scale Sensor Networks, Miao Jin, Su Xia, Hongyi Wu, Xianfeng David Gu Jun 2017

Scalable And Fully Distributed Localization In Large-Scale Sensor Networks, Miao Jin, Su Xia, Hongyi Wu, Xianfeng David Gu

Electrical & Computer Engineering Faculty Publications

This work proposes a novel connectivity-based localization algorithm, well suitable for large-scale sensor networks with complex shapes and a non-uniform nodal distribution. In contrast to current state-of-the-art connectivity-based localization methods, the proposed algorithm is highly scalable with linear computation and communication costs with respect to the size of the network; and fully distributed where each node only needs the information of its neighbors without cumbersome partitioning and merging process. The algorithm is theoretically guaranteed and numerically stable. Moreover, the algorithm can be readily extended to the localization of networks with a one-hop transmission range distance measurement, and the propagation of …


Deep Models For Engagement Assessment With Scarce Label Information, Feng Li, Guangfan Zhang, Wei Wang, Roger Xu, Tom Schnell, Jonathan Wen, Frederic Mckenzie, Jiang Li Jan 2017

Deep Models For Engagement Assessment With Scarce Label Information, Feng Li, Guangfan Zhang, Wei Wang, Roger Xu, Tom Schnell, Jonathan Wen, Frederic Mckenzie, Jiang Li

Electrical & Computer Engineering Faculty Publications

Task engagement is defined as loadings on energetic arousal (affect), task motivation, and concentration (cognition) [1]. It is usually challenging and expensive to label cognitive state data, and traditional computational models trained with limited label information for engagement assessment do not perform well because of overfitting. In this paper, we proposed two deep models (i.e., a deep classifier and a deep autoencoder) for engagement assessment with scarce label information. We recruited 15 pilots to conduct a 4-h flight simulation from Seattle to Chicago and recorded their electroencephalograph (EEG) signals during the simulation. Experts carefully examined the EEG signals and labeled …


Teaching Hands-On Cyber Defense Labs To Middle School And High School Students: Our Experience From Gencyber Camps, Peng Jiang, Xin Tian, Chunsheng Xin, Wu He Jan 2017

Teaching Hands-On Cyber Defense Labs To Middle School And High School Students: Our Experience From Gencyber Camps, Peng Jiang, Xin Tian, Chunsheng Xin, Wu He

Electrical & Computer Engineering Faculty Publications

With the high demand of the nation for next generation cybersecurity experts, it is important to design and provide hands-on labs for students at the K-12 level in order to increase their interest in cybersecurity and enhance their confidence in learning cybersecurity skills at the young age. This poster reports some preliminary analysis results from the 2016 GenCyber summer camp held at Old Dominion University (ODU), which is part of a nationwide grant program funded by the National Security Agency (NSA) and the National Science Foundation (NSF). This poster also demonstrates the design of three hands-on labs which have been …


Resilient And Trustworthy Dynamic Data-Driven Application Systems (Dddas) Services For Crisis Management Environments, Youakim Badr, Salim Hariti, Youssif Al-Nashif, Erik Blasch Jan 2015

Resilient And Trustworthy Dynamic Data-Driven Application Systems (Dddas) Services For Crisis Management Environments, Youakim Badr, Salim Hariti, Youssif Al-Nashif, Erik Blasch

Electrical & Computer Engineering Faculty Publications

Future crisis management systems needresilient and trustworthy infrastructures to quickly develop reliable applications and processes, andensure end-to-end security, trust, and privacy. Due to the multiplicity and diversity of involved actors, volumes of data, and heterogeneity of shared information;crisis management systems tend to be highly vulnerable and subjectto unforeseen incidents. As a result, the dependability of crisis management systems can be at risk. This paper presents a cloud-based resilient and trustworthy infrastructure (known as rDaaS) to quickly develop secure crisis management systems. The rDaaS integrates the Dynamic Data-Driven Application Systems (DDDAS) paradigm into a service-oriented architecture over cloud technology and provides …


A Comparative Study Of Two Prediction Models For Brain Tumor Progression, Deqi Zhou, Loc Tran, Jihong Wang, Jiang Li, Karen O. Egiazarian (Ed.), Sos S. Agaian (Ed.), Atanas P. Gotchev (Ed.) Jan 2015

A Comparative Study Of Two Prediction Models For Brain Tumor Progression, Deqi Zhou, Loc Tran, Jihong Wang, Jiang Li, Karen O. Egiazarian (Ed.), Sos S. Agaian (Ed.), Atanas P. Gotchev (Ed.)

Electrical & Computer Engineering Faculty Publications

MR diffusion tensor imaging (DTI) technique together with traditional T1 or T2 weighted MRI scans supplies rich information sources for brain cancer diagnoses. These images form large-scale, high-dimensional data sets. Due to the fact that significant correlations exist among these images, we assume low-dimensional geometry data structures (manifolds) are embedded in the high-dimensional space. Those manifolds might be hidden from radiologists because it is challenging for human experts to interpret high-dimensional data. Identification of the manifold is a critical step for successfully analyzing multimodal MR images.

We have developed various manifold learning algorithms (Tran et al. 2011; Tran et al. …


Sparse Coding Based Dense Feature Representation Model For Hyperspectral Image Classification, Ender Oguslu, Guoqing Zhou, Zezhong Zheng, Khan Iftekharuddin, Jiang Li Jan 2015

Sparse Coding Based Dense Feature Representation Model For Hyperspectral Image Classification, Ender Oguslu, Guoqing Zhou, Zezhong Zheng, Khan Iftekharuddin, Jiang Li

Electrical & Computer Engineering Faculty Publications

We present a sparse coding based dense feature representation model (a preliminary version of the paper was presented at the SPIE Remote Sensing Conference, Dresden, Germany, 2013) for hyperspectral image (HSI) classification. The proposed method learns a new representation for each pixel in HSI through the following four steps: sub-band construction, dictionary learning, encoding, and feature selection. The new representation usually has a very high dimensionality requiring a large amount of computational resources. We applied the l1/lq regularized multiclass logistic regression technique to reduce the size of the new representation. We integrated the method with a linear …


The Multimodal Brain Tumor Image Segmentation Benchmark (Brats), Bjoern H. Menze, Andras Jakab, Stefan Bauer, Jayashree Kalpathy-Cramer, Khan M. Iftekharuddin, Syed M.S. Reza Jan 2015

The Multimodal Brain Tumor Image Segmentation Benchmark (Brats), Bjoern H. Menze, Andras Jakab, Stefan Bauer, Jayashree Kalpathy-Cramer, Khan M. Iftekharuddin, Syed M.S. Reza

Electrical & Computer Engineering Faculty Publications

In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low-and high-grade glioma patients-manually annotated by up to four raters-and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions …


Adaptive Graph Construction For Isomap Manifold Learning, Loc Tran, Zezhong Zheng, Guoquing Zhou, Jiang Li, Karen O. Egiazarian (Ed.), Sos S. Agaian (Ed.), Atanas P. Gotchev (Ed.) Jan 2015

Adaptive Graph Construction For Isomap Manifold Learning, Loc Tran, Zezhong Zheng, Guoquing Zhou, Jiang Li, Karen O. Egiazarian (Ed.), Sos S. Agaian (Ed.), Atanas P. Gotchev (Ed.)

Electrical & Computer Engineering Faculty Publications

Isomap is a classical manifold learning approach that preserves geodesic distance of nonlinear data sets. One of the main drawbacks of this method is that it is susceptible to leaking, where a shortcut appears between normally separated portions of a manifold. We propose an adaptive graph construction approach that is based upon the sparsity property of the ℓ1 norm. The ℓ1 enhanced graph construction method replaces k-nearest neighbors in the classical approach. The proposed algorithm is first tested on the data sets from the UCI data base repository which showed that the proposed approach performs better than …


Sensor Selection And Integration To Improve Video Segmentation In Complex Environments, Adam R. Reckley, Wei-Wen Hsu, Chung-Hao Chen, Gangfeng Ma, E-Wen Huang Jan 2014

Sensor Selection And Integration To Improve Video Segmentation In Complex Environments, Adam R. Reckley, Wei-Wen Hsu, Chung-Hao Chen, Gangfeng Ma, E-Wen Huang

Electrical & Computer Engineering Faculty Publications

Background subtraction is often considered to be a required stage of any video surveillance system being used to detect objects in a single frame and/or track objects across multiple frames in a video sequence. Most current state-of-the-art techniques for object detection and tracking utilize some form of background subtraction that involves developing a model of the background at a pixel, region, or frame level and designating any elements that deviate from the background model as foreground. However, most existing approaches are capable of segmenting a number of distinct components but unable to distinguish between the desired object of interest and …


Integration Of Multispectral Face Recognition And Multi-Ptz Camera Automated Surveillance For Security Applications, Chung-Hao Chen, Yi Yao, Hong Chang, Andreas Koschan, Mongi Abidi Jan 2013

Integration Of Multispectral Face Recognition And Multi-Ptz Camera Automated Surveillance For Security Applications, Chung-Hao Chen, Yi Yao, Hong Chang, Andreas Koschan, Mongi Abidi

Electrical & Computer Engineering Faculty Publications

Due to increasing security concerns, a complete security system should consist of two major components, a computer-based face-recognition system and a real-time automated video surveillance system. A computer-based face-recognition system can be used in gate access control for identity authentication. In recent studies, multispectral imaging and fusion of multispectral narrow-band images in the visible spectrum have been employed and proven to enhance the recognition performance over conventional broad-band images, especially when the illumination changes. Thus, we present an automated method that specifies the optimal spectral ranges under the given illumination. Experimental results verify the consistent performance of our algorithm via …


Hyperspectral Image Classification Using A Spectral-Spatial Sparse Coding Model, Ender Oguslu, Guoqing Zhou, Jiang Li, Lorenzo Bruzzone (Ed.) Jan 2013

Hyperspectral Image Classification Using A Spectral-Spatial Sparse Coding Model, Ender Oguslu, Guoqing Zhou, Jiang Li, Lorenzo Bruzzone (Ed.)

Electrical & Computer Engineering Faculty Publications

We present a sparse coding based spectral-spatial classification model for hyperspectral image (HSI) datasets. The proposed method consists of an efficient sparse coding method in which the l1/lq regularized multi-class logistic regression technique was utilized to achieve a compact representation of hyperspectral image pixels for land cover classification. We applied the proposed algorithm to a HSI dataset collected at the Kennedy Space Center and compared our algorithm to a recently proposed method, Gaussian process maximum likelihood (GP-ML) classifier. Experimental results show that the proposed method can achieve significantly better performances than the GP-ML classifier when training data …


Fusion Of Visual And Thermal Images Using Genetic Algorithms, Sertan Erkanli, Jiang Li, Ender Oguslu, Shangce Gao (Ed.) Jan 2012

Fusion Of Visual And Thermal Images Using Genetic Algorithms, Sertan Erkanli, Jiang Li, Ender Oguslu, Shangce Gao (Ed.)

Electrical & Computer Engineering Faculty Publications

No abstract provided.


Real-Time Anomaly Detection In Full Motion Video, Glenn Konowicz,, Jiang Li, Donnie Self (Ed.) Jan 2012

Real-Time Anomaly Detection In Full Motion Video, Glenn Konowicz,, Jiang Li, Donnie Self (Ed.)

Electrical & Computer Engineering Faculty Publications

Improvement in sensor technology such as charge-coupled devices (CCD) as well as constant incremental improvements in storage space has enabled the recording and storage of video more prevalent and lower cost than ever before. However, the improvements in the ability to capture and store a wide array of video have required additional manpower to translate these raw data sources into useful information. We propose an algorithm for automatically detecting anomalous movement patterns within full motion video thus reducing the amount of human intervention required to make use of these new data sources. The proposed algorithm tracks all of the objects …


Model Individualization For Real-Time Operator Functional State Assessment, Guangfan Zhang, Roger Xu, Wei Wang, Aaron A. Pepe, Feng Li, Jiang Li, Frederick Mckenzie, Tom Schnell, Nick Anderson, Dean Heitkamp Jan 2012

Model Individualization For Real-Time Operator Functional State Assessment, Guangfan Zhang, Roger Xu, Wei Wang, Aaron A. Pepe, Feng Li, Jiang Li, Frederick Mckenzie, Tom Schnell, Nick Anderson, Dean Heitkamp

Electrical & Computer Engineering Faculty Publications

Proper assessment of Operator Functional State (OFS) and appropriate workload modulation offer the potential to improve mission effectiveness and aviation safety in both overload and under-load conditions. Although a wide range of research has been devoted to building OFS assessment models, most of the models are based on group statistics and little or no research has been directed towards model individualization, i.e., tuning the group statistics based model for individual pilots. Moreover, little emphasis has been placed on monitoring whether the pilot is disengaged during low workload conditions. The primary focus of this research is to provide a real-time engagement …


Fast Stochastic Wiener Filter For Super-Resolution Image Restoration With Information Theoretic Visual Quality Assessment, Amr Hussein Yousef, Jiang Li, Mohammad Karim, Mark Allen Neifeld (Ed.), Amit Ashok (Ed.) Jan 2012

Fast Stochastic Wiener Filter For Super-Resolution Image Restoration With Information Theoretic Visual Quality Assessment, Amr Hussein Yousef, Jiang Li, Mohammad Karim, Mark Allen Neifeld (Ed.), Amit Ashok (Ed.)

Electrical & Computer Engineering Faculty Publications

Super-resolution (SR) refers to reconstructing a single high resolution (HR) image from a set of subsampled, blurred and noisy low resolution (LR) images. The reconstructed image suffers from degradations such as blur, aliasing, photo-detector noise and registration and fusion error. Wiener filter can be used to remove artifacts and enhance the visual quality of the reconstructed images. In this paper, we introduce a new fast stochastic Wiener filter for SR reconstruction and restoration that can be implemented efficiently in the frequency domain. Our derivation depends on the continuous-discrete-continuous (CDC) model that represents most of the degradations encountered during the image-gathering …


Toward Automatic Subpixel Registration Of Unmanned Airborne Vehicle Images, Amr Hussein Yousef, Jiang Li, Mohammad Karim, Mark Allen Neifeld (Ed.), Amit Ashok (Ed.) Jan 2012

Toward Automatic Subpixel Registration Of Unmanned Airborne Vehicle Images, Amr Hussein Yousef, Jiang Li, Mohammad Karim, Mark Allen Neifeld (Ed.), Amit Ashok (Ed.)

Electrical & Computer Engineering Faculty Publications

Many applications require to register images within subpixel accuracy like computer vision especially super-resolution (SR) where the estimated subpixel shifts are very crucial in the reconstruction and restoration of SR images. In our work we have an optical sensor that is mounted on an unmanned airborne vehicle (UAV) and captures a set of images that contain sufficient overlapped area required to reconstruct a SR image. Due to the wind, The UAV may encounter rotational effects such as yaw, pitch and roll which can distort the acquired as well as processed images with shear, tilt or perspective distortions. In this paper …


Procedural Wound Geometry And Blood Flow Generation For Medical Training Simulators, Rifat Aras, Yuzhong Shen, Jiang Li, David R. Holmes Iii (Ed.), Kenneth H. Wong (Ed.) Jan 2012

Procedural Wound Geometry And Blood Flow Generation For Medical Training Simulators, Rifat Aras, Yuzhong Shen, Jiang Li, David R. Holmes Iii (Ed.), Kenneth H. Wong (Ed.)

Electrical & Computer Engineering Faculty Publications

Efficient application of wound treatment procedures is vital in both emergency room and battle zone scenes. In order to train first responders for such situations, physical casualty simulation kits, which are composed of tens of individual items, are commonly used. Similar to any other training scenarios, computer simulations can be effective means for wound treatment training purposes. For immersive and high fidelity virtual reality applications, realistic 3D models are key components. However, creation of such models is a labor intensive process. In this paper, we propose a procedural wound geometry generation technique that parameterizes key simulation inputs to establish the …


Mathematical Model Development Of Super-Resolution Image Wiener Restoration, Amr H. Yousef, Jiang Li, Mohammad A. Karim Jan 2012

Mathematical Model Development Of Super-Resolution Image Wiener Restoration, Amr H. Yousef, Jiang Li, Mohammad A. Karim

Electrical & Computer Engineering Faculty Publications

In super-resolution (SR), a set of degraded low-resolution (LR) images are used to reconstruct a higher-resolution image that suffers from acquisition degradations. One way to boost SR images visual quality is to use restoration filters to remove reconstructed images artifacts. We propose an efficient method to optimally allocate the LR pixels on the high-resolution grid and introduce a mathematical derivation of a stochastic Wiener filter. It relies on the continuous-discrete-continuous model and is constrained by the periodic and nonperiodic interrelationships between the different frequency components of the proposed SR system. We analyze an end-to-end model and formulate the Wiener filter …


An Integrated Computer-Aided Robotic System For Dental Implantation, Xiaoyan Sun, Yongki Yoon, Jiang Li, Frederic D. Mckenzie Jan 2011

An Integrated Computer-Aided Robotic System For Dental Implantation, Xiaoyan Sun, Yongki Yoon, Jiang Li, Frederic D. Mckenzie

Electrical & Computer Engineering Faculty Publications

This paper describes an integrated system for dental implantation including both preoperative planning utilizing computer-aided technology and automatic robot operation during the intra-operative stage. A novel two-step registration procedure was applied for transforming the preoperative plan to the operation of the robot, with the help of a Coordinate Measurement Machine (CMM). Experiments with a patient-specific phantom were carried out to evaluate the registration error for both position and orientation. After adopting several improvements, registration accuracy of the system was significantly improved. Sub-millimeter accuracy with the Target Registration Errors (TREs) of 0.38±0.16 mm (N=5) was achieved. The target orientation errors after …