Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

PDF

Computer Sciences

Electrical & Computer Engineering Faculty Publications

Textures

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Procedural Wound Geometry And Blood Flow Generation For Medical Training Simulators, Rifat Aras, Yuzhong Shen, Jiang Li, David R. Holmes Iii (Ed.), Kenneth H. Wong (Ed.) Jan 2012

Procedural Wound Geometry And Blood Flow Generation For Medical Training Simulators, Rifat Aras, Yuzhong Shen, Jiang Li, David R. Holmes Iii (Ed.), Kenneth H. Wong (Ed.)

Electrical & Computer Engineering Faculty Publications

Efficient application of wound treatment procedures is vital in both emergency room and battle zone scenes. In order to train first responders for such situations, physical casualty simulation kits, which are composed of tens of individual items, are commonly used. Similar to any other training scenarios, computer simulations can be effective means for wound treatment training purposes. For immersive and high fidelity virtual reality applications, realistic 3D models are key components. However, creation of such models is a labor intensive process. In this paper, we propose a procedural wound geometry generation technique that parameterizes key simulation inputs to establish the …


Bcc Skin Cancer Diagnosis Based On Texture Analysis Techniques, Shao-Hui Chuang, Xiaoyan Sun, Wen-Yu Chang, Gwo-Shing Chen, Adam Huang, Jiang Li, Frederic D. Mckenzie Jan 2011

Bcc Skin Cancer Diagnosis Based On Texture Analysis Techniques, Shao-Hui Chuang, Xiaoyan Sun, Wen-Yu Chang, Gwo-Shing Chen, Adam Huang, Jiang Li, Frederic D. Mckenzie

Electrical & Computer Engineering Faculty Publications

In this paper, we present a texture analysis based method for diagnosing the Basal Cell Carcinoma (BCC) skin cancer using optical images taken from the suspicious skin regions. We first extracted the Run Length Matrix and Haralick texture features from the images and used a feature selection algorithm to identify the most effective feature set for the diagnosis. We then utilized a Multi-Layer Perceptron (MLP) classifier to classify the images to BCC or normal cases. Experiments showed that detecting BCC cancer based on optical images is feasible. The best sensitivity and specificity we achieved on our data set were 94% …


3d Face Reconstruction From Limited Images Based On Differential Evolution, Qun Wang, Jiang Li, Vijayan K. Asari, Mohammad A. Karim, Andrew G. Tescher (Ed.) Jan 2011

3d Face Reconstruction From Limited Images Based On Differential Evolution, Qun Wang, Jiang Li, Vijayan K. Asari, Mohammad A. Karim, Andrew G. Tescher (Ed.)

Electrical & Computer Engineering Faculty Publications

3D face modeling has been one of the greatest challenges for researchers in computer graphics for many years. Various methods have been used to model the shape and texture of faces under varying illumination and pose conditions from a single given image. In this paper, we propose a novel method for the 3D face synthesis and reconstruction by using a simple and efficient global optimizer. A 3D-2D matching algorithm which employs the integration of the 3D morphable model (3DMM) and the differential evolution (DE) algorithm is addressed. In 3DMM, the estimation process of fitting shape and texture information into 2D …


Vegetation Identification Based On Satellite Imagery, Vamsi K.R. Mantena, Ramu Pedada, Srinivas Jakkula, Yuzhong Shen, Jiang Li, Hamid R. Arabnia (Ed.) Jan 2008

Vegetation Identification Based On Satellite Imagery, Vamsi K.R. Mantena, Ramu Pedada, Srinivas Jakkula, Yuzhong Shen, Jiang Li, Hamid R. Arabnia (Ed.)

Electrical & Computer Engineering Faculty Publications

Automatic vegetation identification plays an important role in many applications including remote sensing and high performance flight simulations. This paper presents a method to automatically identify vegetation based upon satellite imagery. First, we utilize the ISODATA algorithm to cluster pixels in the images where the number of clusters is determined by the algorithm. We then apply morphological operations to the clustered images to smooth the boundaries between clusters and to fill holes inside clusters. After that, we compute six features for each cluster. These six features then go through a feature selection algorithm and three of them are determined to …