Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

PDF

Computer Sciences

Electrical & Computer Engineering Faculty Publications

Brain

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Opioid Use Disorder Prediction Using Machine Learning Of Fmri Data, A. Temtam, Liangsuo Ma, F. Gerard Moeller, M. S. Sadique, K. M. Iftekharuddin, Khan M. Iftekharuddin (Ed.), Weijie Chen (Ed.) Jan 2023

Opioid Use Disorder Prediction Using Machine Learning Of Fmri Data, A. Temtam, Liangsuo Ma, F. Gerard Moeller, M. S. Sadique, K. M. Iftekharuddin, Khan M. Iftekharuddin (Ed.), Weijie Chen (Ed.)

Electrical & Computer Engineering Faculty Publications

According to the Centers for Disease Control and Prevention (CDC) more than 932,000 people in the US have died since 1999 from a drug overdose. Just about 75% of drug overdose deaths in 2020 involved Opioid, which suggests that the US is in an Opioid overdose epidemic. Identifying individuals likely to develop Opioid use disorder (OUD) can help public health in planning effective prevention, intervention, drug overdose and recovery policies. Further, a better understanding of prediction of overdose leading to the neurobiology of OUD may lead to new therapeutics. In recent years, very limited work has been done using statistical …


A Comparative Study Of Two Prediction Models For Brain Tumor Progression, Deqi Zhou, Loc Tran, Jihong Wang, Jiang Li, Karen O. Egiazarian (Ed.), Sos S. Agaian (Ed.), Atanas P. Gotchev (Ed.) Jan 2015

A Comparative Study Of Two Prediction Models For Brain Tumor Progression, Deqi Zhou, Loc Tran, Jihong Wang, Jiang Li, Karen O. Egiazarian (Ed.), Sos S. Agaian (Ed.), Atanas P. Gotchev (Ed.)

Electrical & Computer Engineering Faculty Publications

MR diffusion tensor imaging (DTI) technique together with traditional T1 or T2 weighted MRI scans supplies rich information sources for brain cancer diagnoses. These images form large-scale, high-dimensional data sets. Due to the fact that significant correlations exist among these images, we assume low-dimensional geometry data structures (manifolds) are embedded in the high-dimensional space. Those manifolds might be hidden from radiologists because it is challenging for human experts to interpret high-dimensional data. Identification of the manifold is a critical step for successfully analyzing multimodal MR images.

We have developed various manifold learning algorithms (Tran et al. 2011; Tran et al. …


The Multimodal Brain Tumor Image Segmentation Benchmark (Brats), Bjoern H. Menze, Andras Jakab, Stefan Bauer, Jayashree Kalpathy-Cramer, Khan M. Iftekharuddin, Syed M.S. Reza Jan 2015

The Multimodal Brain Tumor Image Segmentation Benchmark (Brats), Bjoern H. Menze, Andras Jakab, Stefan Bauer, Jayashree Kalpathy-Cramer, Khan M. Iftekharuddin, Syed M.S. Reza

Electrical & Computer Engineering Faculty Publications

In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low-and high-grade glioma patients-manually annotated by up to four raters-and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions …


Prediction Of Brain Tumor Progression Using Multiple Histogram Matched Mri Scans, Debrup Banerjee, Loc Tran, Jiang Li, Yuzhong Shen, Frederic Mckenzie, Jihong Wang, Ronald M. Summers (Ed.), Bram Van Ginneken (Ed.) Jan 2011

Prediction Of Brain Tumor Progression Using Multiple Histogram Matched Mri Scans, Debrup Banerjee, Loc Tran, Jiang Li, Yuzhong Shen, Frederic Mckenzie, Jihong Wang, Ronald M. Summers (Ed.), Bram Van Ginneken (Ed.)

Electrical & Computer Engineering Faculty Publications

In a recent study [1], we investigated the feasibility of predicting brain tumor progression based on multiple MRI series and we tested our methods on seven patients' MRI images scanned at three consecutive visits A, B and C. Experimental results showed that it is feasible to predict tumor progression from visit A to visit C using a model trained by the information from visit A to visit B. However, the trained model failed when we tried to predict tumor progression from visit B to visit C, though it is clinically more important. Upon a closer look at the MRI scans …