Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Washington University in St. Louis

Theses/Dissertations

Discipline
Keyword
Publication Year
Publication

Articles 31 - 60 of 703

Full-Text Articles in Engineering

Optical Perturbation Of Protein Kinase A Activity Via Photoactivatable Inhibitor Peptides, Peter Chen May 2023

Optical Perturbation Of Protein Kinase A Activity Via Photoactivatable Inhibitor Peptides, Peter Chen

McKelvey School of Engineering Theses & Dissertations

Protein Kinase A (PKA) plays important roles in diverse biological processes such as sleep, long term memory, and synaptic plasticity. In addition, PKA also acts as an integrator of neuromodulator signaling though G protein-coupled receptor activation. However, despite genetic knockout and pharmacological inhibition experiments that demonstrate the importance of PKA, it is unclear where, when, or how PKA plays these roles in cellular physiology and behavior. In order to better understand the function of PKA in these processes, and how neuromodulator signaling drives complex behavioral changes, there exists a need for a method to selectively activate/inactivate PKA with high spatial …


Two-Dimensional Field Effect Transistor, Yimeng Li May 2023

Two-Dimensional Field Effect Transistor, Yimeng Li

McKelvey School of Engineering Theses & Dissertations

As silicon-based field-effect transistors (FETs) approach their physical limits with channel lengths approaching 5 nm, the search for new semiconductor materials that can surpass this limit has become urgent. Two-dimensional layered semiconductor nanomaterials, represented by graphene, have emerged as promising candidates due to their unique physical, mechanical, and chemical properties. Unlike traditional silicon-based FETs, two dimensional (2D) layered nanomaterials are held together by van der Waals forces between layers, with no dangling bonds on the material surface, which can effectively address the short-channel effect issue faced by traditional silicon-based FETs. However, unlike traditional silicon-based FETs, which have matured fabrication systems, …


Development Of A Multispectral Vis-Swir Imaging Modality For Cutaneous Water Assessment, Quinlan Mcgrath May 2023

Development Of A Multispectral Vis-Swir Imaging Modality For Cutaneous Water Assessment, Quinlan Mcgrath

McKelvey School of Engineering Theses & Dissertations

Inflammatory skin diseases are estimated to impact 20% of the global population and are the fourth leading cause of nonfatal disability worldwide. Diagnosis and management are predominantly based on clinician visual assessment of disease related changes in skin morphology. The qualitative nature of this method can result in misdiagnosis and underdiagnoses of treatable diseases. There persists systematic undertreatment of skin of color patients given the more subtle presentation of erythema against pigmented skin. There exists a clinical need for a quantitative and objective inflammation assessment tool that meets the needs of a diverse patient population. The accumulation of interstitial fluid …


Dual Color Optogenetic Control For Analyzing Cardiac Function In Drosophila, Jiantao Zhu May 2023

Dual Color Optogenetic Control For Analyzing Cardiac Function In Drosophila, Jiantao Zhu

McKelvey School of Engineering Theses & Dissertations

Prolonged consumption of carbohydrate-rich diets and immobile lifestyles frequently cause metabolic disorders and obesity and, as a result, may lead to progressive heart dysfunction among broad social groups of the population. Drosophila melanogaster serves as an essential model organism in cardiovascular disease research due to conserved physiological and genomic traits shared with humans, its genetic and molecular toolbox versatility, and cost-effective maintenance. Here, we combine optogenetics and optical coherence tomography to study cardiovascular function in D. melanogaster. A new optogenetic pacing system has been developed, employing a transgenic line carrying two opsins: ChR2 and NpHR2.0. A custom-built hardware setup …


Pathformer: Interpretable And Powerful Graph Transformer For Gene Network Analysis, Qihang Zhao, Zehao Dong, Muhan Zhang, Philip Payne, Michael Province, Carlos Cruchaga, Tianyu Zhao, Yixin Chen, Fuhai Li May 2023

Pathformer: Interpretable And Powerful Graph Transformer For Gene Network Analysis, Qihang Zhao, Zehao Dong, Muhan Zhang, Philip Payne, Michael Province, Carlos Cruchaga, Tianyu Zhao, Yixin Chen, Fuhai Li

McKelvey School of Engineering Theses & Dissertations

Understanding which gene/pathway expression profiles are related to specific disease phenotypes has been a critical active research area in Bioinformatics. Although graph neural networks (GNNs) have achieved impressive performance on various graph-based real-world applications such as recommendation systems and social network analysis, applying GNNs in gene-network-based Bioinformatical tasks is still challenging due to the effectiveness issue and lack of interpretation methods. In this paper, we propose PathFormer, an interpretable graph Transformer (i.e. GNN), to effectively analyze gene networks and discover meaningful biomarkers/pathways. PathFormer is composed of a stack of PathFormer encoder layers and two subsequent interpretation machines. The PathFormer encoder …


A Novel Mrna Delivery Strategy Employing Adenovirus Piggyback Mrna Binders Via Catcher/Tag Molecular Glue, Kexin Geng May 2023

A Novel Mrna Delivery Strategy Employing Adenovirus Piggyback Mrna Binders Via Catcher/Tag Molecular Glue, Kexin Geng

McKelvey School of Engineering Theses & Dissertations

mRNA-based therapeutics open a new era for the prevention and treatment of a wide range of diseases. However, existing mRNA delivery vehicles have limited repertoires for dendritic cell targeting and intranasal administration which are two paramount delivery pathways of significant advantages for treating cancer and infectious respiratory diseases. Adenovirus (Ad) with well-deciphered viral genomes and intensive-studied structure biology has been developed for DCs-targeted cancer vaccines and intranasal COVID vaccines. In light of these virtues, Ad presents as the “off-the-shelf” tool possessing well-defined manufacturable capabilities and translatable feasibility that perfectly complements the current limitations of mRNA delivery. In this study, we …


3-Dimensional Visualization Of Cardiac Plaque Mapping Data, Phan Ly Vy Nguyen May 2023

3-Dimensional Visualization Of Cardiac Plaque Mapping Data, Phan Ly Vy Nguyen

McKelvey School of Engineering Theses & Dissertations

Atrial Fibrillation (AF) of one of the most prevalent cardiac arrythmia in humans, and also the most studied arrythmias due to its high association with cardiovascular morbidity and mortality. Diagnosis of AF, which is highly dependent on the observation of the irregular signal in the atria, is often challenging since AF is often asymptomatic at the onset. There has been a lot of effort in exploring different cardiac mapping techniques to understand the dynamics of AF for better intervention. This study aims at developing a MATLAB interface that assists the development of a cardiac plaque mapping data acquisition system in …


Confined Growth Of Perovskite Stabilized By Strain Engineering, Xucheng Tao May 2023

Confined Growth Of Perovskite Stabilized By Strain Engineering, Xucheng Tao

McKelvey School of Engineering Theses & Dissertations

Halide perovskite has been extensively studied for its excellent optoelectronic properties. In this project, we want to explore some range of band gap that conventional 2D materials could not have. To overcome this challenge, we aimed to produce two-dimensional (2D) perovskites with large scale which is suitable for device fabrication and improve its stability using strain engineering. To prepare such 2D perovskite, we tried 2D transformation first and then decided to use confined growth to optimize result. For strain engineering, we employed sputtered nickel as an external stressor.

So far, we have produced multilayer polycrystalline perovskites material close to atomic …


Preparing Non-Human Primates To Study Hand-Eye Coordination In Frontal Eye Fields (Fef) During Delayed Movement Task, Juliusz Cydzik May 2023

Preparing Non-Human Primates To Study Hand-Eye Coordination In Frontal Eye Fields (Fef) During Delayed Movement Task, Juliusz Cydzik

McKelvey School of Engineering Theses & Dissertations

ABSTRACT OF THE THESIS Preparing Non-Human Primates to Study Hand-Eye Coordination in Frontal Eye Fields (FEF) During Delayed Movement Task by Juliusz Cydzik Master of Science in Biomedical Engineering Washington University in St. Louis, 2023 Professor Lawrence Snyder, Chair Hand-eye coordination enables humans and non-human primates to use their hands and eyes to perform various tasks. We are interested in coordination at the systems level, where saccades and reaches are encoded. The parietal reach region (PRR), situated at the posterior end of the intraparietal sulcus (IPS) and overlapping portions of the medial intraparietal area (MIP) and V6a, is commonly attributed …


Single-Molecule Super-Resolution Imaging Of Geobacter Sulfurreducens Under Anaerobic Conditions, Ziyi Hu May 2023

Single-Molecule Super-Resolution Imaging Of Geobacter Sulfurreducens Under Anaerobic Conditions, Ziyi Hu

McKelvey School of Engineering Theses & Dissertations

Geobacter sulfurreducens are anaerobic bacteria capable of making electrical contacts with other organisms and extracellular electron acceptors. The challenge of imaging live Geobacter bacteria is maintaining anaerobic conditions during the imaging process. In this thesis, we augment a single-molecule localization microscope (SMLM) with a home-built anaerobic imaging chamber and use constant argon bubbling to maintain oxygen-free imaging conditions. To validate the imaging protocol, we use the transient binding of Nile red to resolve the spherical morphology of lipid-coated glass spheres with nanoscale resolution. However, when imaging Geobacter, the distribution of Nile red localizations is non-uniform, both between different cells …


Development Of Methods To Enhance Stem Cell Derived Islet Survival, Aining Fan May 2023

Development Of Methods To Enhance Stem Cell Derived Islet Survival, Aining Fan

McKelvey School of Engineering Theses & Dissertations

No abstract provided.


Synthesis And Characterization Of Sodium Cathode Materials, He Zhou May 2023

Synthesis And Characterization Of Sodium Cathode Materials, He Zhou

McKelvey School of Engineering Theses & Dissertations

As sodium batteries hold great promise as a next-generation energy storage device to replace lithium batteries, the development of sodium battery materials has become increasingly urgent. The current study aims to investigate two potential sodium-ion battery cathode materials, Sodium Vanadium Phosphate, and Sodium Manganese Hexacyanoferrate, optimize the experimental procedures, conduct a systematic analysis of material properties and characterization, and ultimately determine the ideal synthesis conditions for these materials.

In the first part of the study, we focused on optimizing the synthesis of Sodium Vanadium Phosphate. By investigating various synthesis conditions, such as annealing temperature, pressure, ascorbic acid content, and material …


Computational Analysis Of Steady Hypersonic Flow Fields Of Nasa Benchmark Geometries Utilizing Ansys Fluent, Aidan Murphy May 2023

Computational Analysis Of Steady Hypersonic Flow Fields Of Nasa Benchmark Geometries Utilizing Ansys Fluent, Aidan Murphy

McKelvey School of Engineering Theses & Dissertations

The Hypersonic International Flight Research Experimentation (HIFiRE) program explores and advances hypersonic aerospace systems by developing a multitude of test flight geometries and conducting experimental test flights to obtain data for use in validation of computational models and results. This study focuses on computational validation of heat flux, and calculation of static pressure profiles, skin friction coefficient profiles, and flow contours. The flow fields studied are for Mach number 7.18 and angles of attack (α) of 0° & 2°. These flow fields include many compressible flow features such as an expansion wave at the intersection of the cone and flat …


Analytical And Experimental Investigation Of Interphase And Dispersion Effects On The Mechanical Stiffness Of Cellulose Nanocomposites, Will Goldberg May 2023

Analytical And Experimental Investigation Of Interphase And Dispersion Effects On The Mechanical Stiffness Of Cellulose Nanocomposites, Will Goldberg

McKelvey School of Engineering Theses & Dissertations

The effect of dispersion and interphase properties on the elastic behavior of cellulose nanocomposites was investigated using a number of composite models, experimental data and a thorough literature review. Cellulose nanocomposites consisting of soy protein isolate (SPI) and cellulose nanocrystals (CNC) or polydopamine coated cellulose nanocrystals (PD-CNC) were prepared via solution casting method and tested for mechanical stiffness. These outcomes were compared to standard composite models as well as novel methods adapted from the literature that incorporate data regarding dispersion quality and interphase properties. The literature review verified that both dispersion and interphase properties are highly dependent on interfacial chemistry …


Synthesis, Radiolabeling And Evaluation Of A Suite Of Tracers With 44Sc For Detecting Extracellular Dna, Zhiyao Li May 2023

Synthesis, Radiolabeling And Evaluation Of A Suite Of Tracers With 44Sc For Detecting Extracellular Dna, Zhiyao Li

McKelvey School of Engineering Theses & Dissertations

Neutrophil extracellular traps involve the rapid translocation of DNA to the outside of the cell under certain stimuli. This structure forms a fibrous network that is able to limit the spread of pathogens and to kill microorganisms. It has also been shown to be present in various pathological processes such as inflammation, autoimmune diseases, and cancer metastasis. Currently, the formation process of NETs in vivo is being extensively studied. However noninvasive detection and quantitation has yet to be achieved. A class of PET tracers are described here that consists of a DNA dye as the backbone that is labeled with …


Engineered Material Systems For Mimicking Tissue And Disease, Margrethe Ruding May 2023

Engineered Material Systems For Mimicking Tissue And Disease, Margrethe Ruding

McKelvey School of Engineering Theses & Dissertations

This thesis comprises two studies involving design and application of soft material systems. The goal of the first study was to design, fabricate, and characterize hydrogel lattice structures with consistent, controllable, anisotropic mechanical properties. Lattices, based on four types of unit cells (cubic, diamond, vintile, and Weaire-Phelan), were printed using stereolithography (SLA) of polyethylene glycol diacrylate (PEGDA). In order to create structural anisotropy in the lattices, unit cell design files were scaled in one direction by a factor of two in each layer and then printed. The mechanical properties of the scaled lattices were measured in shear and compression and …


Persistence Of Dna From Biocontained Genetically Engineered Microbes, Wentao Dai Apr 2023

Persistence Of Dna From Biocontained Genetically Engineered Microbes, Wentao Dai

McKelvey School of Engineering Theses & Dissertations

The utilization of genetically engineered microbes in environmental systems requires effective biocontainment mechanisms to ensure their safe operation. CRISPR-based kill switches are a promising solution, inducing cell death through site-specific DNA cleavage under specific environmental conditions. In this study, we aimed to assess the impact of CRISPR-based kill switches on the abundance and persistence of bacterial DNA. Our results revealed that while CRISPR-based kill switches were capable of achieving high reductions in viable Escherichia coli Nissle 1917 (EcN); the DNA largely remained intact. This was observed in two strains of EcN: one enabled with multi-locus genome cleavage, and the other …


Application Of Direct Simulation Monte Carlo Method To Computation Of Rf Signal Degradation During Hypersonic Flight, Andrew Derubertis Mar 2023

Application Of Direct Simulation Monte Carlo Method To Computation Of Rf Signal Degradation During Hypersonic Flight, Andrew Derubertis

McKelvey School of Engineering Theses & Dissertations

In order to further understand the hypersonic blackout problem, the first step is to investigate models to quantify signal degradation and begin implementing these models to representative plasma sheath and flow data. This research is the first attempt at implementing a model to predict RF signal degradation through the plasma sheath surrounding the hypersonic air vehicle. The investigation is performed using a Direct Simulation Monte Carlo (DSMC) based flow solver. The dsmcFoam solver in the OpenFoam library is used to simulate the flow around hypersonic bodies to obtain flow field properties, most importantly the electron number density profile, to aid …


Comparison Of In-Vitro 3d Human Embryoids With Current Models For Gastrulation, Jin Park Jan 2023

Comparison Of In-Vitro 3d Human Embryoids With Current Models For Gastrulation, Jin Park

McKelvey School of Engineering Theses & Dissertations

Gastrulation is an early morphogenetic process that is conserved across most metazoans and lays out the future body plan through the formation and shaping of the three germ layers: endoderm, mesoderm, and ectoderm. Despite its importance, not much is known about the events surrounding human gastrulation that occurs in utero due to ethical and technical limitations on studying human embryos. Therefore, many researchers have devised protocols for creating in vitro models of gastrulation using embryonic stem cells. Initially starting with mouse embryonic stem cells, the field of in vitro embryo models has advanced rapidly, with protocols using human embryonic stem …


Effect Of Diabetes-Associated Mutations In Kir 6.2/Sur1 On Katp Channel Activities, Yunpeng Li Dec 2022

Effect Of Diabetes-Associated Mutations In Kir 6.2/Sur1 On Katp Channel Activities, Yunpeng Li

McKelvey School of Engineering Theses & Dissertations

Maturity Onset Diabetes of the Young (MODY) is a type of diabetes, distinct from either type I or type II, that happens before age 25 (MedlinePlus, 2022). Unlike the other two more common forms of diabetes, MODY is classified as a series of monogenetic disorders (American Diabetes Association Professional Practice Committee, 2021), caused by autosomal mutations. MODY is typically characterized by insufficient secretion of insulin, a similar symptom to type I diabetes, classified into 14 different types based on mutations found on different genes. Among them, subtypes 12 and 13, also called neonatal diabetes mellitus (NDM), are caused by gain-of-function …


Three-Component Composite Phase-Change Material For Thermal Regulation, Bidisha Ojha Dec 2022

Three-Component Composite Phase-Change Material For Thermal Regulation, Bidisha Ojha

McKelvey School of Engineering Theses & Dissertations

Phase change materials can increase the efficiency of many energy-intensive applications, such as solar power plants, solar heating and cooling systems, heat recovery systems, photovoltaic electricity systems, and Earth satellite systems. In several proposed thermal management systems for high power electronic equipment, PCMs change phase and absorb latent heat at peak energy loads during operation, then dissipate this energy later to prevent overheating. More specifically, composite PCM’s, consisting of an organic material (e.g., paraffin) and an inorganic material (e.g., metallic alloys or salt hydrates), provide a superior balance of thermal conductivity and latent heat for thermal management. Organic PCMs have …


Functionalized Plasmonic Nanostructures For Ultrasensitive Single Cell Analysis, Priya Rathi Dec 2022

Functionalized Plasmonic Nanostructures For Ultrasensitive Single Cell Analysis, Priya Rathi

Arts & Sciences Electronic Theses and Dissertations

Ultrasensitive detection and quantification of soluble, secreted and cell surface-bound proteins is critical for advancing our understanding of cellular systems, enabling effective drug development, novel therapies, and bio-diagnostics. However, exiting technologies are largely limited by their sensitivity, making the detection and quantification of low-abundant proteins extremely challenging. This forms a major barrier in various fields of biology and biomedical sciences. In this work, we introduce novel cellular analysis methodologies based on plasmon-enhanced fluorescence for analyzing cell structure and probing surface and secreted proteins from cells. In the first part, we introduce plasmon-enhanced expansion microscopy and demonstrate the effectiveness of employing …


The Role Of The Neurodevelopmental Disorder Gene Myt1l In Mammalian Brain Development, Jiayang Chen Dec 2022

The Role Of The Neurodevelopmental Disorder Gene Myt1l In Mammalian Brain Development, Jiayang Chen

Arts & Sciences Electronic Theses and Dissertations

Recent human genetic studies have associated mutations in a gene called Myelin Transcription Factor 1 Like (MYT1L) with neurodevelopmental disorders (NDDs). Patients with MYT1L loss of function (LoF) mutations (MYT1L Syndrome patients) demonstrate shared symptoms such as microcephaly, attention deficit and hyperactivity disorder (ADHD), and obesity. Despite prior studies showing MYT1L overexpression facilitates neuronal differentiation in vitro, its functions in vivo, especially in the mammalian brain, and how its mutation leads to human disease pathology remains poorly understood. Here, I established the first mouse model of MYT1L Syndrome mimicking a patient specific LoF mutation. I found mice with Myt1l heterozygous …


The Effect Of Ionization Density In Applications Of Radiation Detection, Dosimetry, And Therapy, Daniel Mulrow Dec 2022

The Effect Of Ionization Density In Applications Of Radiation Detection, Dosimetry, And Therapy, Daniel Mulrow

Arts & Sciences Electronic Theses and Dissertations

This dissertation covers a wide range of topics but is linked by the common theme of radiation interacting with materials and studying the result of those interactions. The introduction describes the fundamentals of how radiation interacts with material and how we are able to detect that radiation and the application of how we use those interactions in radiation oncology. The thesis starts with a chapter detailing the temperature dependence of the photophysics in two organic scintillators. This chapter is the foundation for a future study that will look the degree to which these scintillators can distinguish between gammas and neutrons …


Investigating Applications Of Deep Learning For Diagnosis Of Post Traumatic Elbow Disease, Hugh James Dec 2022

Investigating Applications Of Deep Learning For Diagnosis Of Post Traumatic Elbow Disease, Hugh James

McKelvey School of Engineering Theses & Dissertations

Traumatic events such as dislocation, breaks, and arthritis of musculoskeletal joints can cause the development of post-traumatic joint contracture (PTJC). Clinically, noninvasive techniques such as Magnetic Resonance Imaging (MRI) scans are used to analyze the disease. Such procedures require a patient to sit sedentary for long periods of time and can be expensive as well. Additionally, years of practice and experience are required for clinicians to accurately recognize the diseased anterior capsule region and make an accurate diagnosis. Manual tracing of the anterior capsule is done to help with diagnosis but is subjective and timely. As a result, there is …


Applying Hls To Fpga Data Preprocessing In The Advanced Particle-Astrophysics Telescope, Meagan Konst Dec 2022

Applying Hls To Fpga Data Preprocessing In The Advanced Particle-Astrophysics Telescope, Meagan Konst

McKelvey School of Engineering Theses & Dissertations

The Advanced Particle-astrophysics Telescope (APT) and its preliminary iteration the Antarctic Demonstrator for APT (ADAPT) are highly collaborative projects that seek to capture gamma-ray emissions. Along with dark matter and ultra-heavy cosmic ray nuclei measurements, APT will provide sub-degree localization and polarization measurements for gamma-ray transients. This will allow for devices on Earth to point to the direction from which the gamma-ray transients originated in order to collect additional data. The data collection process is as follows. A scintillation occurs and is detected by the wavelength-shifting fibers. This signal is then read by an ASIC and stored in an ADC …


Optogenetic Heart Pacing And Heart Arrest In Drosophila Melanogaster Using Integrated Ocm Imaging And Light Stimulation System, Yuxuan Wang Dec 2022

Optogenetic Heart Pacing And Heart Arrest In Drosophila Melanogaster Using Integrated Ocm Imaging And Light Stimulation System, Yuxuan Wang

McKelvey School of Engineering Theses & Dissertations

Optogenetics has been widely applied to cardiovascular research using different models. Among them, Drosophila melanogaster (fruit fly) outstands for its similarity of human genes for disease modeling and short life cycle for rapid screening to analyze genetic mechanisms of heart disease. However, most of the current models only allow either activation or inhibition of the heartbeat, which is not sufficient to model complex arrhythmia. Our lab developed a novel Drosophila transgenic model based on a double transgenic line containing two light-sensitive genes, Channelrhodopsin-2 (ChR2) and Halorhodopsin2.0 (NpHR2.0), that enable dual-directional control of the heartbeat rhythm. Real-time optical control of the …


Dei Without Equity: Lab Coat Culture And Persistent Racism In Bioengineering Laboratories, Janet Canady Dec 2022

Dei Without Equity: Lab Coat Culture And Persistent Racism In Bioengineering Laboratories, Janet Canady

Arts & Sciences Electronic Theses and Dissertations

From biased algorithms to discriminatory devices to medical racism, it is clear that biomedical products are created in ways that reproduce racial disparities in access and use. Yet the most common solutions recommended by biomedical research institutions emphasize diversity, equity, and inclusion practices that research has already proven ineffective and sometimes harmful. In fact, labs rarely scrutinize whether and how their research products reflect racial bias, assumptions, or ideals. In this paper, I shift the focus to consider how bioengineering laboratories function as a site in which racial processes contribute to product outcomes. I ask, what are the racial dynamics …


Measuring The Effectiveness Of Light Concentration With The Catoptric Surface, Samatha Kodali Dec 2022

Measuring The Effectiveness Of Light Concentration With The Catoptric Surface, Samatha Kodali

McKelvey School of Engineering Theses & Dissertations

The Catoptric Surface is an array of mirrors arranged on the interior of a large window which serves to manipulate the effects of natural lighting inside the room. The framework for moving the mirrors uses an interface which connects various Raspberry Pis and Arduino Unos to move stepper motors that connect to each mirror and move them as desired by the user. This kind of light manipulation allows the atmosphere of the room to be modified using natural lighting rather than artificial lighting and can be useful for varying the way people interact with a space. The intensity at which …


Development Of Optical Coherence Tomography Angiography System For Mouse Eye Imaging And Measurement Of Vasodilation, Yilin Li Dec 2022

Development Of Optical Coherence Tomography Angiography System For Mouse Eye Imaging And Measurement Of Vasodilation, Yilin Li

McKelvey School of Engineering Theses & Dissertations

Optical coherence tomography angiography (OCTA) is broadly known as a non-invasive technology that allows examining the retinal and choroidal vasculatures, alternative to fluorescein angiography. In this study, we have developed an optical coherence tomography (OCT) system for imaging the mouse eye. We measure the retinal thickness, which is 216.53um. We apply OCTA to characterize the quantitative change in vessel diameter and the perfusion density of the retina after the wild-type mice are administered the adenosine or inhale carbon dioxide. Comparing the images acquired one minute and 5 minutes after the injection or CO2 inhalation with the baseline, distinct changes …