Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Nucleation Studies In Barium Silicate Glasses And Soda-Lime Silicate Glass, Xinsheng Xia Aug 2021

Nucleation Studies In Barium Silicate Glasses And Soda-Lime Silicate Glass, Xinsheng Xia

McKelvey School of Engineering Theses & Dissertations

Controlling nucleation is key for the manufacture of glasses and glass-ceramics. It has been observed by different researchers in many silicate glasses that at low temperatures the critical work of cluster formation (i.e. the nucleation barrier) slowly rises rather than decreasing with decreasing temperature. However, this experimental observation is in contradiction with nucleation theories. In this dissertation, crystal nucleation was studied in BaO·2SiO2, 5BaO·8SiO2, and Na2O·2CaO·3SiO2 glasses. The main research topics include measurements of the nucleation rate, the structural evolution of the glass, and the low-temperature nucleation behavior. A special focus is given to the low-temperature nucleation anomaly. In total, …


Influence Of Separator Surface Charge On The Nucleation And Penetration Dynamics Of Metal Electrodes In Concentrated Electrolytes, Sikuang Wang May 2020

Influence Of Separator Surface Charge On The Nucleation And Penetration Dynamics Of Metal Electrodes In Concentrated Electrolytes, Sikuang Wang

McKelvey School of Engineering Theses & Dissertations

No abstract provided.


Abiotic- And Biotic-Formation Of Manganese Oxides And Their Fate In Environmental Systems, Haesung Jung Dec 2017

Abiotic- And Biotic-Formation Of Manganese Oxides And Their Fate In Environmental Systems, Haesung Jung

McKelvey School of Engineering Theses & Dissertations

Manganese (hydr)oxide (Mn (hydr)oxide) minerals are ubiquitous in aquatic and terrestrial environments. These minerals have high surface areas and are highly sorptive and redox active. From decades of accumulated knowledge about natural redox cycling, we have found that Mn (hydr)oxides play critical roles as electron donors and acceptors in elemental geochemical cycling and biological metabolisms in nature. Thus, Mn (hydr)oxides have garnered increasing interest to understand natural systems. Considering the variety of redox reactions with Mn (hydr)oxides in nature, it is also expected that there should be diverse pathways to form Mn (hydr)oxides through abiotic and biotic processes. Previous studies …


Applications Of Aerosol Technologies In The Silicon Industry, Miguel Vazquez Pufleau Dec 2016

Applications Of Aerosol Technologies In The Silicon Industry, Miguel Vazquez Pufleau

McKelvey School of Engineering Theses & Dissertations

In this dissertation, the focus was on two unit operations that have the potential to significantly lower the cost and energy required for refining silicon. First, the removal of carbon from silicon kerf (sawing dust from wafering) was examined to enable its recycling. Second, silane pyrolysis was studied to better understand the dynamics of the initial stages of silicon aerosol formation and growth.


Calcium Carbonate Formation In Energy-Related Subsurface Environments And Engineered Systems, Qingyun Li Aug 2016

Calcium Carbonate Formation In Energy-Related Subsurface Environments And Engineered Systems, Qingyun Li

McKelvey School of Engineering Theses & Dissertations

Geologic CO2 sequestration (GCS) in subsurface saline aquifers is a promising strategy to mitigate climate change caused by increasing anthropogenic CO2 emissions from energy production. At GCS sites, interactions between fluids and geomedia are important because they can affect CO2 trapping efficiency and the safety of CO2 storage. These interactions include the dissolution and precipitation of minerals. One of the most important minerals is calcium carbonate, because it can permanently trap CO2.

In this work, Portland cement was used as a model geomedium to investigate the chemical reactions, mechanical alterations, transport of reactive fluids, and the interplay of all these …


Nanoparticle Formation In The Flame Synthesis Of Multicomponent Nanostructured Materials For Clean Energy Applications, Jiaxi Fang Aug 2016

Nanoparticle Formation In The Flame Synthesis Of Multicomponent Nanostructured Materials For Clean Energy Applications, Jiaxi Fang

McKelvey School of Engineering Theses & Dissertations

This dissertation studies the initial stages of particle formation during the combustion synthesis of multicomponent nanomaterials. Combustion is commonly used for the production of nanomaterials at industrial scales and has advantages of high production rates, low waste generation, and scalability. However, there are limitations in being able to apply this synthesis approach to more advanced multicomponent systems. Gas to particle conversion in flames occurs through precursor decomposition, collisional growth, coagulation, condensation, and sintering. There is a fundamental gap in knowledge on the initial stages of particle formation in flames below 2nm due to measurement difficulties and instrumentation limitations. Using a …