Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Computational Analysis Of Steady Hypersonic Flow Fields Of Nasa Benchmark Geometries Utilizing Ansys Fluent, Aidan Murphy May 2023

Computational Analysis Of Steady Hypersonic Flow Fields Of Nasa Benchmark Geometries Utilizing Ansys Fluent, Aidan Murphy

McKelvey School of Engineering Theses & Dissertations

The Hypersonic International Flight Research Experimentation (HIFiRE) program explores and advances hypersonic aerospace systems by developing a multitude of test flight geometries and conducting experimental test flights to obtain data for use in validation of computational models and results. This study focuses on computational validation of heat flux, and calculation of static pressure profiles, skin friction coefficient profiles, and flow contours. The flow fields studied are for Mach number 7.18 and angles of attack (α) of 0° & 2°. These flow fields include many compressible flow features such as an expansion wave at the intersection of the cone and flat …


Development And Application Of Elliptic Blending Lag K-Omega Sst Standard And Wall-Distance-Free Turbulence Model, Wenjie Shang May 2020

Development And Application Of Elliptic Blending Lag K-Omega Sst Standard And Wall-Distance-Free Turbulence Model, Wenjie Shang

McKelvey School of Engineering Theses & Dissertations

In recent decades, Computational Fluid Dynamics (CFD) has become the most widely used technology to understand the fundamental complex fluid dynamics of turbulent flows as well as for modeling of turbulent flows in industrial applications. In industrial applications, the widely used methodology is to solve Reynolds-Average Navier-Stokes Equations (RANS) equations in conjunction with a turbulence model since it strikes a balance between accuracy and computational cost compared to other high fidelity approaches namely the Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS), There are a large number of turbulence models proposed in past five decades, majority of them are …


Development Of One-Equation Arsm-K-Kl Model And Extension Of Wray-Agarwal Turbulence Model To Transitional And Rough Wall Flows, Tianshu Wen May 2019

Development Of One-Equation Arsm-K-Kl Model And Extension Of Wray-Agarwal Turbulence Model To Transitional And Rough Wall Flows, Tianshu Wen

McKelvey School of Engineering Theses & Dissertations

In last five decades, Computational Fluid Dynamics (CFD) has become a mature technology and the CFD solvers are now regularly employed in the analysis and design of automobiles, aircrafts and a wide variety of other industrial applications. Despite of its wide usage, one of its building blocks, namely the ‘Turbulence Modeling’ still remains a pacing item in accurate computation of fluid flows; turbulence models are required in numerical simulation of turbulent flows using the Reynolds Averaged Navier-Stokes equations (RANS). Even though Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) can provide better accuracy, the needed computing power at present …


Development And Application Of Rotation And Curvature Correction To Wray-Agarwal Turbulence Model, Xiao Zhang Aug 2018

Development And Application Of Rotation And Curvature Correction To Wray-Agarwal Turbulence Model, Xiao Zhang

McKelvey School of Engineering Theses & Dissertations

Computational Fluid Dynamics (CFD) is increasingly playing a significant role in the analysis and design of aircrafts, turbomachines, automobiles, and in many other industrial applications. In majority of the applications, the fluid flow is generally turbulent. The accurate prediction of turbulent flows to date remains a challenging problem in CFD. In almost all industrial applications, Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with a turbulence model are employed for simulation and prediction of turbulent flows. Currently the one-equation (namely the Spalart-Allmaras (SA) and Wray-Agarwal (WA) and two-equation (namely the k-ε and Shear Stress Transport k-ω) turbulence models remain the most widely …


Uncertainty Quantification Of Turbulence Model Closure Coefficients On Openfoam And Fluent For Mildly Separated Flows, Ike Witte May 2017

Uncertainty Quantification Of Turbulence Model Closure Coefficients On Openfoam And Fluent For Mildly Separated Flows, Ike Witte

McKelvey School of Engineering Theses & Dissertations

In this thesis, detailed uncertainty quantification studies focusing on the closure coefficients of eddy-viscosity turbulence models for several flows using two CFD solvers have been performed. Three eddy viscosity turbulence models considered are: the one-equation Spalart-Allmaras (SA) model, the two-equation Shear Stress Transport (SST) k-ω model, and the one-equation Wray-Agarwal (WA) model. OpenFOAM and ANSYS Fluent are used as flow solvers. Uncertainty quantification analyses are performed for subsonic flow over a flat plate, subsonic flow over a backward-facing step, and transonic flow past an axisymmetric bump. In the case of flat plate, coefficients of pressure, lift, drag, and skin friction …