Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

The British University in Egypt

Series

Discipline
Keyword
Publication Year
Publication

Articles 211 - 240 of 255

Full-Text Articles in Engineering

A Multiscale Model For Damage Progression And Detection In Piezo/Pyroelectric Composite Laminates, Yehia Bahei-El-Din, Amany Micheal Jan 2017

A Multiscale Model For Damage Progression And Detection In Piezo/Pyroelectric Composite Laminates, Yehia Bahei-El-Din, Amany Micheal

Centre for Advanced Materials

Assessment of damage initiation and progression in composite structures reinforced with electrically active filaments is modelled in a multiscale analysis. The analysis developed is a two-tier, interactive analysis, which involves two length scales; macroscopic, and microscopic. The proposed multiscale analysis provides seamless integration of the mechanics at the two length scales, including piezoelectric and pyroelectric coupling effects and damage under overall thermomechanical loads and an electric field applied to electroactive fibers. The macromechanical analysis is performed for multidirectional, fibrous laminates using the lamination theory, including bending, and the micromechanical analysis is performed using a two-phase model and a periodic array …


Detecting Laminate Damage Using Embedded Electrically Active Plies – An Analytical Approach, Amany Micheal, Yehia Bahei-El-Din Jan 2017

Detecting Laminate Damage Using Embedded Electrically Active Plies – An Analytical Approach, Amany Micheal, Yehia Bahei-El-Din

Centre for Advanced Materials

Assessment of damage initiation and progression in composite laminates with embedded electrically active plies is modeled. Utilizing electrically active layers embedded in composite laminates as damage sensors is proposed by several researchers and is mainly assessed experimentally. Sensing damage using embedded electrically active plies is generally preferred over the use of surface mounted PZT wafers since the range of the latter is limited to a very narrow area underneath the surface, while multiple damage mechanisms can generally be found in several plies of the laminate. The solution presented invokes two levels of analysis. Firstly, on the laminate level, applied membrane …


Exploiting Modern Image Processing In Surface Flow Visualisation, Tarek Ihab Abdelsalam, Richard Williams, Grant Ingram Jan 2017

Exploiting Modern Image Processing In Surface Flow Visualisation, Tarek Ihab Abdelsalam, Richard Williams, Grant Ingram

Mechanical Engineering

Surface flow visualisation is an experimental technique where the surface of interest is painted with an oil and dye mixture before a flow is applied to the object. In regions of high shear stress the oil/dye mixture is then removed and in regions of low shear stress the oil/dye mixture stays or builds up. The resulting pattern can be analysed to determine the structure near the surface under test, this is normally done in a qualitative manner with flow structures being identified based on the expertise of the experimentalist. Modern image processing tools can identify shapes and lines in pictures …


Co-Gasification Of Coal And Biomass Wastes In An Entrained Flow Gasifier: Modelling, Simulation And Integration Opportunities, Dalia A. Ali Eng, Mamdouh A. Gadalla Prof., Omar Y. Abdelaziz, Christian P. Hulteberg, Fatma H. Ashour Prof. Jan 2017

Co-Gasification Of Coal And Biomass Wastes In An Entrained Flow Gasifier: Modelling, Simulation And Integration Opportunities, Dalia A. Ali Eng, Mamdouh A. Gadalla Prof., Omar Y. Abdelaziz, Christian P. Hulteberg, Fatma H. Ashour Prof.

Chemical Engineering

Gasification processes convert carbon-containing material into syngas through chemical reactions in the presence of gasifying agents such as air, oxygen, and steam. Syngas mixtures produced from such processes consist mainly of carbon monoxide (CO), hydrogen (H2), carbon dioxide (CO2), and methane (CH4); this gas can be directly utilised as a fuel to produce electricity or steam. Besides, it is regarded as a basic feedstock within the petrochemical and conventional refining industries, producing various useful products like methanol, hydrogen, ammonia, and acetic acid. In this work, a rigorous process model is developed to simulate the co-gasification of coal-biomass blends through an …


Investigating A Sequentially Assembled Mnox/Pt Nanocatalyst As A Potential Anode For Ethylene Glycol Fuel Cells, Ghada El-Nowihy Jan 2017

Investigating A Sequentially Assembled Mnox/Pt Nanocatalyst As A Potential Anode For Ethylene Glycol Fuel Cells, Ghada El-Nowihy

Chemical Engineering

Aiming at a better electrocatalytic enhancement of ethylene glycol (EG) electrooxidation (EGO) in an alkaline medium for EG fuel cells (EGFCs), a MnOx/Pt anode was developed. A sequential layer-by-layer electrodeposition technique was employed to assemble first platinum nanoparticles (nano-Pt) directly onto the surface of a glassy carbon (GC) electrode then manganese oxide nanoparticles (nano-MnOx) were next immobilized. Field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDS) were employed to evaluate the surface morphology and the bulk composition of the proposed catalyst in addition to the relative ratio of the catalyst’s ingredients. On the other hand, the catalyst …


Platinum Nanoparticles-Cobalt Oxide Nanostructures As Efficient Binary Catalyst For Ethylene Glycol Electro-Oxidation, Ghada El-Nowihy Jan 2017

Platinum Nanoparticles-Cobalt Oxide Nanostructures As Efficient Binary Catalyst For Ethylene Glycol Electro-Oxidation, Ghada El-Nowihy

Chemical Engineering

An enhanced electrocatalytic activity towards ethylene glycol oxidation reaction (EGO) in alkaline medium is observed at a glassy carbon (GC) electrode modified with a nanoparticle-based binary catalyst composed of Pt (nano-Pt) and cobalt oxide (nano-CoOx). The electrocatalytic activity of the modified electrodes towards EGO depends on the loading level as well as the composition of the catalyst layer atop the GC electrode surface. Several techniques including cyclic voltammetry (CV), field-emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDS) are used to address the catalytic activity of the proposed catalyst and to reveal their surface morphology and composition, respectively. …


Finite Element Simulation Of Pzt-Aided Interrogation Of Composite Laminates Exhibiting Damage, Amany Micheal, Yehia Bahei-El-Din Nov 2016

Finite Element Simulation Of Pzt-Aided Interrogation Of Composite Laminates Exhibiting Damage, Amany Micheal, Yehia Bahei-El-Din

Centre for Advanced Materials

Piezoelectricity has proved effective in capturing changes in structures caused by various damage mechanisms. In one approach, piezoelectric wafer active sensors (PWAS) are mounted on the surface of the host structure and utilized as both actuators and sensors to interrogate the structure and monitor its health. This is achieved by subjecting the PWAS to a transient electric pulse and reading the resulting voltage. Changes in the stiffness of the substrate due to structural damage affect the response of the PWAS, which could be correlated to integrity of the structure. Applying this technique to fibrous composite laminates encounters particular challenges due …


Preparation Of Nano-Size Ceramic Membrane From Industrial Waste, Shereen K. Amin, Mai H. Roushdy, Chakinaz Aly El-Sherbiny, Heba Mohamed Abdallah, Magdi F. Abadir Nov 2016

Preparation Of Nano-Size Ceramic Membrane From Industrial Waste, Shereen K. Amin, Mai H. Roushdy, Chakinaz Aly El-Sherbiny, Heba Mohamed Abdallah, Magdi F. Abadir

Chemical Engineering

Industrial ceramic wastes are becoming an increasing problem worldwide. Recently, this problem has attracted social concern due to the growing amounts of waste despite the measures and precautions that have been taken worldwide aiming at managing such wastes. One promising solution that has been recently researched consists incorporating such wastes in ceramic bodies which besides minimizing the waste load often improve the quality of the ceramic body. Roller kilns used in the production of ceramic tiles are routinely ground to remove traces of contamination. The fine ground powder is usually discarded as a useless waste. In the present paper, the …


Modelling Of Coal-Biomass Blends Gasification And Power Plant Revamp Alternatives In Egypt’S Natural Gas Sector, Dalia A. Ali Eng, Mamdouh A. Gadalla Prof., Omar Y. Abdelaziz, Fatma H. Ashour Prof. Oct 2016

Modelling Of Coal-Biomass Blends Gasification And Power Plant Revamp Alternatives In Egypt’S Natural Gas Sector, Dalia A. Ali Eng, Mamdouh A. Gadalla Prof., Omar Y. Abdelaziz, Fatma H. Ashour Prof.

Chemical Engineering

Recently, there has been a growing research interest in the co-gasification of biomass with coal to produce syngas and electricity in a sustainable manner. Co-gasification technology do not only decrease potentially the exploitation of a significant amount of conventional coal resources, and thus lower greenhouse gases (GHG) emissions, but also boost the overall gasification process efficiency. In the present work, a rigorous simulation model of an entrained flow gasifier is developed using the Aspen Plus® software environment. The proposed simulation model is tested for an American coal and the model validation is performed in good agreement with practical data. The …


Microwave-Assisted Synthesis Of Metal Oxides Nanoparticles : Efficient Heterogeneous Catalysts For Applications In Pollution Control Technologies, Hany A. Elazab Dr Apr 2016

Microwave-Assisted Synthesis Of Metal Oxides Nanoparticles : Efficient Heterogeneous Catalysts For Applications In Pollution Control Technologies, Hany A. Elazab Dr

Chemical Engineering

Metal oxides and Magnetic nanoparticles have been recognized as a class of nanostructured materials of current interest due to its well-known outstanding physical and chemical properties; especially when used in combination with other metal nano-particles. These kinds of nanostructured materials play an important role in many aspects of research ranging from catalysis and biology to material science, advanced technological, medical applications, and green chemistry. The metal oxide nano catalysts are also of great importance in improving the thermal-catalytic decomposition performance. The advanced and unique magnetic, electronic, and catalytic properties of the materials in the nano scale attracted research centers to …


Effect Of Ce And Co Addition To Fe/Al2o3 For Catalytic Methane Decomposition, Ahmed S. Al-Fatesh, Ashraf Amin, Ahmed A. Ibrahim, Wasim Ullah Khan, Moustafa A. Soliman, Raja L. Al-Otaibi, Anis H. Fakeeha Jan 2016

Effect Of Ce And Co Addition To Fe/Al2o3 For Catalytic Methane Decomposition, Ahmed S. Al-Fatesh, Ashraf Amin, Ahmed A. Ibrahim, Wasim Ullah Khan, Moustafa A. Soliman, Raja L. Al-Otaibi, Anis H. Fakeeha

Chemical Engineering

Catalytic methane decomposition is studied in a fixed bed reactor. Two sets of bimetallic catalysts are employed, namely: 30%Fe-X%Ce/Al2O3 and 30%Fe-X%Co/Al2O3, and compared with monometallic 30%Fe/Al2O3 catalyst. The effect of promoting Fe with Ce and Co and reduction temperature are investigated. The results reveal that Ce addition has shown a negative impact on H2 yield while a positive effect on H2 yield and catalyst stability are observed with Co addition. In terms of number of moles of produced hydrogen per active sites, Fe/Al2O3 has shown a higher number of moles of hydrogen compared to bimetallic catalysts. The catalyst reduced at …


Reaction Parameters And Energy Optimisation For Biodiesel Production Using A Supercritical Process, Nessren Farrag, Mamdouh Gadalla, Mai Fouad Jan 2016

Reaction Parameters And Energy Optimisation For Biodiesel Production Using A Supercritical Process, Nessren Farrag, Mamdouh Gadalla, Mai Fouad

Chemical Engineering

No abstract provided.


An Overview Of Production And Development Of Ceramic Membranes, Shereen Kamel Amin, Heba Mohamed Abdallah, Mai H. Roushdy, Chakinaz Aly El-Sherbiny Jan 2016

An Overview Of Production And Development Of Ceramic Membranes, Shereen Kamel Amin, Heba Mohamed Abdallah, Mai H. Roushdy, Chakinaz Aly El-Sherbiny

Chemical Engineering

Ceramic membranes became one of the most important ceramic products because of their numerous benefits. Many attempts have been made by researchers to produce ceramic membranes with modified properties by varying their raw materials. Some of these attempts included incorporating wastes into their production process. Examples of such waste are fly ash wastes, glass waste, mud resulting from the hydro cyclone laundries, cortical bone animal, coal gangue, sawdust, construction waste and rice husk. An ideal waste would be priceless waste while at the same time assisting minimizing pollution. Such a situation deals with a dual economic and environmental aspect. This …


Gasification Of Coal And Heat Integration Modification For Igcc - Integrated Gasification Combined Cycle, Dalia A. Ali Eng, Mamdouh A. Gadalla Prof., Fatma H. Ashour Prof. Oct 2015

Gasification Of Coal And Heat Integration Modification For Igcc - Integrated Gasification Combined Cycle, Dalia A. Ali Eng, Mamdouh A. Gadalla Prof., Fatma H. Ashour Prof.

Chemical Engineering

Use of energy is closely related to the development of an economy. The most useful form of energy in the modern world is electricity. IGCC has higher fuel flexibility (biomass, refinery residues, petroleum coke, etc.) and generates multiple products (electricity, hydrogen and chemicals like methanol and higher alcohols) and by-products - sulphur, sulphuric acid, slag, etc. IGCC plants include coal preparation unit, air separation unit (ASU) to separate oxygen from air to use it in the gasification process, gasification unit where an incomplete combustion for coal is made to produce Syngas, cleaning unit to remove acid gases and CO2 from …


Highly Efficient And Magnetically Recyclable Graphene-Supportedpd/Fe3o4 Nanoparticle Catalysts For Suzuki And Heck Cross-Coupling Reactions, Hany A. Elazab Feb 2015

Highly Efficient And Magnetically Recyclable Graphene-Supportedpd/Fe3o4 Nanoparticle Catalysts For Suzuki And Heck Cross-Coupling Reactions, Hany A. Elazab

Chemical Engineering

tHerein, we report a facile and efficient one-step method for the synthesis of highly active, Pd/Fe3O4nanoparticles supported on graphene nanosheets (Pd/Fe3O4/G) that exhibit excellent catalytic activityfor Suzuki and Heck coupling reactions and that can be magnetically separated from the reaction mix-ture and recycled multiple times without loss of catalytic activity. The synthesis approach is based on theMicrowave (MW)-assisted reduction of palladium and ferric nitrates in the presence of graphene oxide(GO) nanosheets using hydrazine hydrate as the reducing agent. The results provide a fundamental under-standing of the system variables by comparing the catalytic activity and recyclability of four differentcatalysts with different …


A Multi-Scale Based Model For Composite Materials With Embedded Pzt Filaments For Energy Harvesting, A.E. El-Etriby, M.E. Abdel-Meguid, K.M. Shalan, Tarek Hatem, Yehia Bahei-El-Din Jan 2015

A Multi-Scale Based Model For Composite Materials With Embedded Pzt Filaments For Energy Harvesting, A.E. El-Etriby, M.E. Abdel-Meguid, K.M. Shalan, Tarek Hatem, Yehia Bahei-El-Din

Centre for Advanced Materials

Ambient vibrations are major source of wasted energy, exploiting properly such vibration can be converted to valuable energy and harvested to power up devices, i.e. electronic devices. Accordingly, energy harvesting using smart structures with active piezoelectric ceramics has gained wide interest over the past few years as a method for converting such wasted energy. This paper provides numerical and experimental analysis of piezoelectric fiber based composites for energy harvesting applications proposing a multi-scale modeling approach coupled with experimental verification. The multi-scale approach suggested predicting the behavior of piezoelectric fiber-based composites use micromechanical model based on Transformation Field Analysis (TFA) to …


Modeling Of Nitrogen Separation From Natural Gas Through Nanoporous Carbon Membranes, Moustafa A. Soliman, A A. Al-Rabiah, Abdelhamid M. Ajbar, F A. Almalki, Omar Y. Abdelaziz Jan 2015

Modeling Of Nitrogen Separation From Natural Gas Through Nanoporous Carbon Membranes, Moustafa A. Soliman, A A. Al-Rabiah, Abdelhamid M. Ajbar, F A. Almalki, Omar Y. Abdelaziz

Chemical Engineering

This work presents a theoretical investigation of the use of nanoporous carbon membranes for the separation of nitrogen from natural gas. A mathematical model to predict the performance of the membrane is developed. The model is a combination of the well known dusty gas model, which describes the transfer of multi-components mixture in porous media, together with a surface diffusion model. The model is first validated using the literature results for the separation of hydrogen from hydrocarbons mixture. The model is then applied to the nitrogen-hydrocarbons system. The membrane performance is evaluated in terms of nitrogen recovery, methane loss, nitrogen …


On The Catalytic Activity Of Palladium Nanoparticles-Based Anodes Towards Formic Acid Electro-Oxidation: Effect Of Electrodeposition Potential, Islam M. Al-Akraa Dr., Ahmad M. Mohammad Prof, Mohamed S. El-Deab Prof, Bahgat E. El-Anadouli Prof Jan 2015

On The Catalytic Activity Of Palladium Nanoparticles-Based Anodes Towards Formic Acid Electro-Oxidation: Effect Of Electrodeposition Potential, Islam M. Al-Akraa Dr., Ahmad M. Mohammad Prof, Mohamed S. El-Deab Prof, Bahgat E. El-Anadouli Prof

Chemical Engineering

In this investigation, the catalytic activity of palladium nanoparticles (PdNPs)-modified glassy carbon (GC) (simply noted as PdNPs/GC) electrodes towards the formic acid electro-oxidation (FAO) was investigated. The deposition of PdNPs on the GC substrate was carried out by a potentiostatic technique at different potentials and the corresponding influence on the particles size and crystal structure of PdNPs as well as the catalytic activity towards FAO was studied. Scanning electron microscopy (SEM) demonstrated the deposition of PdNPs in spherical shapes and the average particle size of PdNPs deposited at a potential of 0 V vs. Ag/AgCl/KCl(sat.) was the smallest (ca. 8 …


Influence Of Support Type And Metal Loading In Methane Decomposition Over Iron Catalyst For Hydrogen Production, Ahmed A. Ibrahim, Ahmed S. Al-Fatesh, Wasim Ullah Khan, Moustafa A. Soliman, Raja L. Al-Otaibi, Anis H. Fakeeha Jan 2015

Influence Of Support Type And Metal Loading In Methane Decomposition Over Iron Catalyst For Hydrogen Production, Ahmed A. Ibrahim, Ahmed S. Al-Fatesh, Wasim Ullah Khan, Moustafa A. Soliman, Raja L. Al-Otaibi, Anis H. Fakeeha

Chemical Engineering

Natural gas resources, stimulate the method of catalytic methane decomposition. Hydrogen is a superb energy carrier and integral component of the present energy systems, while carbon nanotubes exhibit remarkable chemical and physical properties. The reaction was run at 700 °C in a fixed bed reactor. Catalyst calcination and reduction were done at 500 °C. MgO, TiO2 and Al2O3 supported catalysts were prepared using a co-precipitation method. Catalysts of different iron loadings were characterized with BET, TGA, XRD, H2-TPR and TEM. The catalyst characterization revealed the formation of multi-walled nanotubes. Alternatively, time on stream tests of supported catalyst at 700 °C …


Approximate Analytical Solution For The Isothermal Lane-Emden Equation In A Spherical Geometry, Moustafa A. Soliman, Yousef S. Al-Zeghayer Jan 2015

Approximate Analytical Solution For The Isothermal Lane-Emden Equation In A Spherical Geometry, Moustafa A. Soliman, Yousef S. Al-Zeghayer

Chemical Engineering

This paper obtains an approximate analytical solution for the isothermal Lane-Emden equation that models a self-gravitating isothermal sphere. The approximate solution is obtained by perturbation methods in terms of small and large distance parameters. The approximate solution is compared with the numerical solution. The approximate solution obtained is valid for all values of the distance parameter.


Fe Supported Alumina Catalyst For Methane Decomposition: Effect Of Co Coupling, Anis H. Fakeeha, Ahmed A. Ibrahim, Ahmed S. Al-Fatesh, Wasim Ullah Khan, Yahya A. Mohammed, Ahmed E. Abasaeed, Moustafa A. Soliman, Raja L. Al-Otaibi Jan 2015

Fe Supported Alumina Catalyst For Methane Decomposition: Effect Of Co Coupling, Anis H. Fakeeha, Ahmed A. Ibrahim, Ahmed S. Al-Fatesh, Wasim Ullah Khan, Yahya A. Mohammed, Ahmed E. Abasaeed, Moustafa A. Soliman, Raja L. Al-Otaibi

Chemical Engineering

In recent years hydrogen production received enormous attention, since it is an environmentally friendly, energy source. The aim of this research was to examine the hydrogen production with the help of methane’s catalytic decomposition. 30% Fe coupled with different % of Co over alumina support, were examined by catalytic decomposition of methane for the production of hydrogen. The catalysts were prepared by impregnation method. The catalytic activity results revealed that the catalysts, coupled 15%Co gave the highest conversion of 72.5% as depicted by the three hour time on stream profile. The fresh and spent catalysts were characterized using different techniques …


Advances In Direct Formic Acid Fuel Cells: Fabrication Of Efficient Ir/Pd Nanocatalysts For Formic Acid Electro-Oxidation, Islam M. Al-Akraa, Ahmad M. Mohammad, Mohamed S. El-Deab Prof, Bahgat E. El-Anadouli Prof Jan 2015

Advances In Direct Formic Acid Fuel Cells: Fabrication Of Efficient Ir/Pd Nanocatalysts For Formic Acid Electro-Oxidation, Islam M. Al-Akraa, Ahmad M. Mohammad, Mohamed S. El-Deab Prof, Bahgat E. El-Anadouli Prof

Chemical Engineering

No abstract provided.


Alumina Supported Iron Catalyst For Hydrogen Production: Calcination Study, Anis H. Fakeeha, Wasim Ullah Khan, Ahmed A. Ibrahim, Raja L. Al-Otaibi, Ahmed S. Al-Fatesh, Moustafa A. Soliman, Ahmed E. Abasaeed Jan 2015

Alumina Supported Iron Catalyst For Hydrogen Production: Calcination Study, Anis H. Fakeeha, Wasim Ullah Khan, Ahmed A. Ibrahim, Raja L. Al-Otaibi, Ahmed S. Al-Fatesh, Moustafa A. Soliman, Ahmed E. Abasaeed

Chemical Engineering

Production of clean hydrogen from thermal decomposition of methane was studied over impregnated 30%Fe/Al2O3 catalysts in a micro-activity fixed-bed reactor. The reactant gases comprising CH4 and N2 in the ratio of 1.5 to 1 were passed through reactor at a flow rate of 25 mL/min. Moreover, effect of calcination was investigated as well. The catalytic activity results indicated that calcination temperature had a significant impact on the performance of 30%Fe/Al2O3 catalyst. The catalyst calcined at 450°C, having CH4 conversion as well as H2 yield over 70%, showed better activity as compared to all other calcination temperatures.


Thermo-Catalytic Methane Decomposition: A Review Of State Of The Art Of Catalysts, Ahmed A. Ibrahim, Ahmed S. Al-Fatesh, Wasim Ullah Khan, Moustafa A. Soliman, Raja L. Al-Otaibi, Anis H. Fakeeha Jan 2015

Thermo-Catalytic Methane Decomposition: A Review Of State Of The Art Of Catalysts, Ahmed A. Ibrahim, Ahmed S. Al-Fatesh, Wasim Ullah Khan, Moustafa A. Soliman, Raja L. Al-Otaibi, Anis H. Fakeeha

Chemical Engineering

The catalytic methane decomposition to produce carbon oxides–free hydrogen and carbon nanomaterial is a promising method feasible for larger production at a moderate cheap price. The produced hydrogen is refined and can be employed straight in fuel cell and in petrochemical industries to produce ammonia and methanol. Auto-thermal reforming of natural gas, partial oxidation, steam reforming are the conventional techniques for hydrogen production in industry, though these processes incur excessive costs for the purification of hydrogen from producing carbon oxides. Current research work on thermo-catalytic methane decomposition has concentrated on promoting the catalytic activity and stability for simultaneous production of …


Microwave-Assisted Synthesis Of Pd Nanoparticles Supported On Fe3o4, Co3o4, And Ni(Oh)2 Nanoplates And Catalysis Application For Co Oxidation, Hany A. Elazab Nov 2014

Microwave-Assisted Synthesis Of Pd Nanoparticles Supported On Fe3o4, Co3o4, And Ni(Oh)2 Nanoplates And Catalysis Application For Co Oxidation, Hany A. Elazab

Chemical Engineering

In this paper, we report a simple, versatile, and rapid method for the synthesis of Pd nanoparticle catalysts supported on Fe3O4, Co3 O4, and Ni(OH)2 nanoplates via microwave irradiation. The important advantage of microwave dielectric heating over convective heating is that the reactants can be added at room temperature (or slightly higher temperatures) without the need for high-temperature injection. Furthermore, the method can be used to synthesize metal nanoparticle catalysts supported on metal oxide nanoparticles in one step. We also demonstrate that the catalyst-support interaction plays an important role in the low temperature oxidation of CO. The current results reveal …


Graphene-Supported Metal Nanoparticles And Its Potential Civilian And Military Applications, Hany A. Elazab Dr May 2014

Graphene-Supported Metal Nanoparticles And Its Potential Civilian And Military Applications, Hany A. Elazab Dr

Chemical Engineering

It is now well established that nanoparticles (1-100 nm) exhibit unique chemical and physical properties that differ from those of the corresponding bulk materials. The dependence of the properties of nanoscale materials on the size, shape and composition of the nanocrystal is a phenomenon of both fundamental scientific interest and many practical and technological applications. These properties are often different, and sometimes superior, to those of the corresponding bulk materials. Due to its unique properties and high surface area, Graphene has become a good candidate as an effective solid support for metal catalysts. The Nobel Prize in Physics for 2010 …


Evaluation Of Solar Energy Solution For Egyptian Remote Areas, Tarek Ihab Abdelsalam, Tarek M. Hatem Jan 2014

Evaluation Of Solar Energy Solution For Egyptian Remote Areas, Tarek Ihab Abdelsalam, Tarek M. Hatem

Mechanical Engineering

Egypt is currently suffering the symptoms of the energy crises, such as electricity outage and high deficit as a result of constant increase in fossil foils through the last decades. On the other hand, Egypt has a high solar availability of more than 18.5 MJ annually. Additionally, Egypt has large uninhabited deserts on both sides of the Nile valley and in Sinai Peninsula, which represent more than 96.5% of the nation’s total land area. Therefore, solar energy is one of the prospective solutions for energy shortage in Egypt. Furthermore, these vast lands are advantageous for commissioning huge solar power generation …


Model-Based Energy Analysis Of An Integrated Midrex-Based Iron/Steel Plant, Abdelhamid M. Ajbar, Khalid I. Alhumaizi, Moustafa A. Soliman, Emadadeen Ali Jan 2014

Model-Based Energy Analysis Of An Integrated Midrex-Based Iron/Steel Plant, Abdelhamid M. Ajbar, Khalid I. Alhumaizi, Moustafa A. Soliman, Emadadeen Ali

Chemical Engineering

This article presents modeling and simulations of an integrated plant for the production of steel using the direct reduced iron (DRI)=electric arc furnace (EAF) route. In a previous work (Alhumaizi et al., 2012), a comprehensive mathematical model of an iron plant based on MIDREX technology was developed, validated, and simulated. In this article, the model is extended to account for an empirical model of an EAF plant. Numerical simulations were carried out for the effect of different operating parameters of the integrated plant. Useful profiles as well as a summary table were compiled to illustrate the results of the sensitivity …


Approximations To The Solution Of The Frank-Kamenetskii Equation In A Spherical Geometry, Moustafa A. Soliman Jan 2014

Approximations To The Solution Of The Frank-Kamenetskii Equation In A Spherical Geometry, Moustafa A. Soliman

Chemical Engineering

In this paper, an approximate analytical solution for Frank-Kamenetskii equation modeling a thermal explosion in a sphere, is obtained. The approximate solution is obtained by perturbation methods in terms of small and large distance parameter. The approximate solution is compared with the numerical solution obtained from an initial value problem formulation to the original boundary value problem. The approximate solution obtained is valid for all values of the distance parameter. For the original boundary value problem and for a given Frank-Kamenetskii parameter, a nonlinear algebraic equation needs to be solved to be able to apply the approximate solution.


A Modified Orthogonal Collocation Method For Reaction Diffusion Problems, Moustafa A. Soliman, Yousef S. Al-Zeghayer, Abdelhamid M. Ajbar Jan 2014

A Modified Orthogonal Collocation Method For Reaction Diffusion Problems, Moustafa A. Soliman, Yousef S. Al-Zeghayer, Abdelhamid M. Ajbar

Chemical Engineering

A low-order collocation method is often useful in revealing the main features such as concentration and temperature profiles and the effectiveness factor for porous catalyst particles. Two modifications are introduced in this paper to make the method more efficient. The first modification is to add an extra collocation point at the center of the particle. It is shown that such extra point introduces a single variable non-linear equation to be solved after obtaining the standard collocation method solution. In the second modification, the polynomial solution obtained from the application of the orthogonal collocation method is transformed to a rational function …