Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

A Simple And Effective Way To Overcome Carbon Monoxide Poisoning Of Platinum Surfaces In Direct Formic Acid Fuel Cells, Islam M. Al-Akraa Dr., Yaser M. Asal Mr, Sohair A. Darwish Ms Jan 2019

A Simple And Effective Way To Overcome Carbon Monoxide Poisoning Of Platinum Surfaces In Direct Formic Acid Fuel Cells, Islam M. Al-Akraa Dr., Yaser M. Asal Mr, Sohair A. Darwish Ms

Chemical Engineering

A glassy carbon (GC) electrode modified with multi-walled carbon nanotubes (MWCNTs) and platinum nanoparticles (PtNPs), Pt/MWCNTs-GC, has been introduced for formic acid electro-oxidation (FAO). A similar loading of PtNPs has been conserved for a proper comparison between the Pt/MWCNTs-GC and the unmodified Pt/GC electrodes. The modification with MWCNTs could enhance the loading of PtNPs onto the GC electrode in a way that minimizes its agglomeration and increases its dispersion in the CNTs network. This not only increases the surface area exposed to the reaction but also interrupts the contiguity of the Pt active sites minimizing the adsorption of the poisoning …


A Promising Modification Of Pt Surfaces With Cnts For Decreasing Poisoning Impact In Direct Methanol Fuel Cells, Islam M. Al-Akraa Dr., Yaser M. Asal Mr, Aya A. Khalifa Ms. Jan 2019

A Promising Modification Of Pt Surfaces With Cnts For Decreasing Poisoning Impact In Direct Methanol Fuel Cells, Islam M. Al-Akraa Dr., Yaser M. Asal Mr, Aya A. Khalifa Ms.

Chemical Engineering

Direct methanol fuel cells (DMFCs) are clean energy sources that have many applications due to the high energy density of methanol as a fuel. However, this type of fuel cells (FCs) has limitations that are preventing it from being commercialized. One such limitation is the adsorption of intermediates such as CO into the surface of the Platinum (Pt) catalyst during methanol oxidation (MO) which deactivates its active sites, where the reaction is taking place, and leads to poisoning of the electrode over the long term. In this study, multi-walled carbon nanotubes (MWCNTs) have been introduced to the Pt-modified glassy carbon …


Fabrication Of Mnox/Mwcnts-Gc Nanocatalyst For Oxygen Evolution Reaction, Islam M. Al-Akraa Dr., Yaser M. Asal Mr, Amr M. Arafa Eng. Jan 2018

Fabrication Of Mnox/Mwcnts-Gc Nanocatalyst For Oxygen Evolution Reaction, Islam M. Al-Akraa Dr., Yaser M. Asal Mr, Amr M. Arafa Eng.

Chemical Engineering

Manganese oxide (MnOx) and multiwalled carbon nanotubes (MWCNTs) are intended to modify the GC electrode for oxygen evolution reaction (OER). Optimization of MnOx loading is carried out and the deposition of 55 cycles was sufficient to obtain the highest activity toward OER. The stability of the catalyst is enhanced by the addition of MWCNTs. As a result, an amount of 22 kWh/Kg of O2 of energy is saved. Several techniques including cyclic voltammetry, linear sweep voltammetry, chronoamperometry, chronopotentiometry, field-emission scanning electron microscopy, and energy dispersive X-ray spectroscopy will be combined to track the catalyst activity and to determine its morphology …


Influence Of Support Type And Metal Loading In Methane Decomposition Over Iron Catalyst For Hydrogen Production, Ahmed A. Ibrahim, Ahmed S. Al-Fatesh, Wasim Ullah Khan, Moustafa A. Soliman, Raja L. Al-Otaibi, Anis H. Fakeeha Jan 2015

Influence Of Support Type And Metal Loading In Methane Decomposition Over Iron Catalyst For Hydrogen Production, Ahmed A. Ibrahim, Ahmed S. Al-Fatesh, Wasim Ullah Khan, Moustafa A. Soliman, Raja L. Al-Otaibi, Anis H. Fakeeha

Chemical Engineering

Natural gas resources, stimulate the method of catalytic methane decomposition. Hydrogen is a superb energy carrier and integral component of the present energy systems, while carbon nanotubes exhibit remarkable chemical and physical properties. The reaction was run at 700 °C in a fixed bed reactor. Catalyst calcination and reduction were done at 500 °C. MgO, TiO2 and Al2O3 supported catalysts were prepared using a co-precipitation method. Catalysts of different iron loadings were characterized with BET, TGA, XRD, H2-TPR and TEM. The catalyst characterization revealed the formation of multi-walled nanotubes. Alternatively, time on stream tests of supported catalyst at 700 °C …


Fe Supported Alumina Catalyst For Methane Decomposition: Effect Of Co Coupling, Anis H. Fakeeha, Ahmed A. Ibrahim, Ahmed S. Al-Fatesh, Wasim Ullah Khan, Yahya A. Mohammed, Ahmed E. Abasaeed, Moustafa A. Soliman, Raja L. Al-Otaibi Jan 2015

Fe Supported Alumina Catalyst For Methane Decomposition: Effect Of Co Coupling, Anis H. Fakeeha, Ahmed A. Ibrahim, Ahmed S. Al-Fatesh, Wasim Ullah Khan, Yahya A. Mohammed, Ahmed E. Abasaeed, Moustafa A. Soliman, Raja L. Al-Otaibi

Chemical Engineering

In recent years hydrogen production received enormous attention, since it is an environmentally friendly, energy source. The aim of this research was to examine the hydrogen production with the help of methane’s catalytic decomposition. 30% Fe coupled with different % of Co over alumina support, were examined by catalytic decomposition of methane for the production of hydrogen. The catalysts were prepared by impregnation method. The catalytic activity results revealed that the catalysts, coupled 15%Co gave the highest conversion of 72.5% as depicted by the three hour time on stream profile. The fresh and spent catalysts were characterized using different techniques …


Thermo-Catalytic Methane Decomposition: A Review Of State Of The Art Of Catalysts, Ahmed A. Ibrahim, Ahmed S. Al-Fatesh, Wasim Ullah Khan, Moustafa A. Soliman, Raja L. Al-Otaibi, Anis H. Fakeeha Jan 2015

Thermo-Catalytic Methane Decomposition: A Review Of State Of The Art Of Catalysts, Ahmed A. Ibrahim, Ahmed S. Al-Fatesh, Wasim Ullah Khan, Moustafa A. Soliman, Raja L. Al-Otaibi, Anis H. Fakeeha

Chemical Engineering

The catalytic methane decomposition to produce carbon oxides–free hydrogen and carbon nanomaterial is a promising method feasible for larger production at a moderate cheap price. The produced hydrogen is refined and can be employed straight in fuel cell and in petrochemical industries to produce ammonia and methanol. Auto-thermal reforming of natural gas, partial oxidation, steam reforming are the conventional techniques for hydrogen production in industry, though these processes incur excessive costs for the purification of hydrogen from producing carbon oxides. Current research work on thermo-catalytic methane decomposition has concentrated on promoting the catalytic activity and stability for simultaneous production of …