Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

The British University in Egypt

Series

Hydrogen

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Kinetics Of Photolysis And Photocatalytic Oxidation Of Ammonium Sulfite For Hydrogen Production, Moustafa A. Soliman, Maryam Zakaria Jan 2021

Kinetics Of Photolysis And Photocatalytic Oxidation Of Ammonium Sulfite For Hydrogen Production, Moustafa A. Soliman, Maryam Zakaria

Chemical Engineering

The production of hydrogen via photocatalytic water splitting is one of the most promising technologies for obtaining chemical energy from direct solar energy while maintaining the least possible waste and pollutants. In this paper, we obtain the kinetic parameters necessary for the design of a photoreactor for photolysis and photocatalysis of ammonium sulfite solution. For the case of photolysis, we obtain the kinetics for the effect of changing the pH on the produced amount of hydrogen. For the case of photocatalysis, the intrinsic kinetic parameters of photocatalysis of water splitting reaction of ammonium sulfite and water in the presence of …


Effect Of Ce And Co Addition To Fe/Al2o3 For Catalytic Methane Decomposition, Ahmed S. Al-Fatesh, Ashraf Amin, Ahmed A. Ibrahim, Wasim Ullah Khan, Moustafa A. Soliman, Raja L. Al-Otaibi, Anis H. Fakeeha Jan 2016

Effect Of Ce And Co Addition To Fe/Al2o3 For Catalytic Methane Decomposition, Ahmed S. Al-Fatesh, Ashraf Amin, Ahmed A. Ibrahim, Wasim Ullah Khan, Moustafa A. Soliman, Raja L. Al-Otaibi, Anis H. Fakeeha

Chemical Engineering

Catalytic methane decomposition is studied in a fixed bed reactor. Two sets of bimetallic catalysts are employed, namely: 30%Fe-X%Ce/Al2O3 and 30%Fe-X%Co/Al2O3, and compared with monometallic 30%Fe/Al2O3 catalyst. The effect of promoting Fe with Ce and Co and reduction temperature are investigated. The results reveal that Ce addition has shown a negative impact on H2 yield while a positive effect on H2 yield and catalyst stability are observed with Co addition. In terms of number of moles of produced hydrogen per active sites, Fe/Al2O3 has shown a higher number of moles of hydrogen compared to bimetallic catalysts. The catalyst reduced at …


Fe Supported Alumina Catalyst For Methane Decomposition: Effect Of Co Coupling, Anis H. Fakeeha, Ahmed A. Ibrahim, Ahmed S. Al-Fatesh, Wasim Ullah Khan, Yahya A. Mohammed, Ahmed E. Abasaeed, Moustafa A. Soliman, Raja L. Al-Otaibi Jan 2015

Fe Supported Alumina Catalyst For Methane Decomposition: Effect Of Co Coupling, Anis H. Fakeeha, Ahmed A. Ibrahim, Ahmed S. Al-Fatesh, Wasim Ullah Khan, Yahya A. Mohammed, Ahmed E. Abasaeed, Moustafa A. Soliman, Raja L. Al-Otaibi

Chemical Engineering

In recent years hydrogen production received enormous attention, since it is an environmentally friendly, energy source. The aim of this research was to examine the hydrogen production with the help of methane’s catalytic decomposition. 30% Fe coupled with different % of Co over alumina support, were examined by catalytic decomposition of methane for the production of hydrogen. The catalysts were prepared by impregnation method. The catalytic activity results revealed that the catalysts, coupled 15%Co gave the highest conversion of 72.5% as depicted by the three hour time on stream profile. The fresh and spent catalysts were characterized using different techniques …


Alumina Supported Iron Catalyst For Hydrogen Production: Calcination Study, Anis H. Fakeeha, Wasim Ullah Khan, Ahmed A. Ibrahim, Raja L. Al-Otaibi, Ahmed S. Al-Fatesh, Moustafa A. Soliman, Ahmed E. Abasaeed Jan 2015

Alumina Supported Iron Catalyst For Hydrogen Production: Calcination Study, Anis H. Fakeeha, Wasim Ullah Khan, Ahmed A. Ibrahim, Raja L. Al-Otaibi, Ahmed S. Al-Fatesh, Moustafa A. Soliman, Ahmed E. Abasaeed

Chemical Engineering

Production of clean hydrogen from thermal decomposition of methane was studied over impregnated 30%Fe/Al2O3 catalysts in a micro-activity fixed-bed reactor. The reactant gases comprising CH4 and N2 in the ratio of 1.5 to 1 were passed through reactor at a flow rate of 25 mL/min. Moreover, effect of calcination was investigated as well. The catalytic activity results indicated that calcination temperature had a significant impact on the performance of 30%Fe/Al2O3 catalyst. The catalyst calcined at 450°C, having CH4 conversion as well as H2 yield over 70%, showed better activity as compared to all other calcination temperatures.


Thermo-Catalytic Methane Decomposition: A Review Of State Of The Art Of Catalysts, Ahmed A. Ibrahim, Ahmed S. Al-Fatesh, Wasim Ullah Khan, Moustafa A. Soliman, Raja L. Al-Otaibi, Anis H. Fakeeha Jan 2015

Thermo-Catalytic Methane Decomposition: A Review Of State Of The Art Of Catalysts, Ahmed A. Ibrahim, Ahmed S. Al-Fatesh, Wasim Ullah Khan, Moustafa A. Soliman, Raja L. Al-Otaibi, Anis H. Fakeeha

Chemical Engineering

The catalytic methane decomposition to produce carbon oxides–free hydrogen and carbon nanomaterial is a promising method feasible for larger production at a moderate cheap price. The produced hydrogen is refined and can be employed straight in fuel cell and in petrochemical industries to produce ammonia and methanol. Auto-thermal reforming of natural gas, partial oxidation, steam reforming are the conventional techniques for hydrogen production in industry, though these processes incur excessive costs for the purification of hydrogen from producing carbon oxides. Current research work on thermo-catalytic methane decomposition has concentrated on promoting the catalytic activity and stability for simultaneous production of …