Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Missouri University of Science and Technology

2010

Discipline
Keyword
Publication
Publication Type

Articles 61 - 90 of 729

Full-Text Articles in Engineering

Nonlinear Control Of Facts Controllers For Damping Interarea Oscillations In Power Systems, Mahyar Zarghami, Jagannathan Sarangapani, Mariesa Crow Oct 2010

Nonlinear Control Of Facts Controllers For Damping Interarea Oscillations In Power Systems, Mahyar Zarghami, Jagannathan Sarangapani, Mariesa Crow

Electrical and Computer Engineering Faculty Research & Creative Works

This paper introduces a new nonlinear control of flexible ac transmission systems (FACTS) controllers for the purpose of damping interarea oscillations in power systems. FACTS controllers consist of series, shunt, or a combination of series-shunt devices which are interfaced with the bulk power system through injection buses. Controlling the angle of these buses can effectively damp low frequency interarea oscillations in the system. The proposed control method is based on finding an equivalent reduced affine nonlinear system for the network from which the dominant machines are extracted based on dynamic coherency. It is shown that if properly selected, measurements obtained …


Thermodynamics Of Strained Vanadium Dioxide Single Crystals, Yijia Gu, Jinbo Cao, Junqiao Wu, Long-Qing Chen Oct 2010

Thermodynamics Of Strained Vanadium Dioxide Single Crystals, Yijia Gu, Jinbo Cao, Junqiao Wu, Long-Qing Chen

Materials Science and Engineering Faculty Research & Creative Works

Vanadium dioxide undergoes a metal-insulator transition, in which the strain condition plays an important role. To investigate the strain contribution, a phenomenological thermodynamic potential for the vanadium dioxide single crystal was constructed. The transformations under the uniaxial stress, wire, and thin film boundary conditions were analyzed, and the corresponding phase diagrams were constructed. The calculated phase diagrams agree well with existing experimental data, and show that the transformation temperature (and Curie temperature) strongly depends on the strain condition.


An Automated Phenotype-Driven Approach (Geneforce) For Refining Metabolic And Regulatory Models, Dipak Barua, Joonhoon Kim, Jennifer L. Reed Oct 2010

An Automated Phenotype-Driven Approach (Geneforce) For Refining Metabolic And Regulatory Models, Dipak Barua, Joonhoon Kim, Jennifer L. Reed

Chemical and Biochemical Engineering Faculty Research & Creative Works

Integrated constraint-based metabolic and regulatory models can accurately predict cellular growth phenotypes arising from genetic and environmental perturbations. Challenges in constructing such models involve the limited availability of information about transcription factor-gene target interactions and computational methods to quickly refine models based on additional datasets. In this study, we developed an algorithm, GeneForce, to identify incorrect regulatory rules and gene-protein-reaction associations in integrated metabolic and regulatory models. We applied the algorithm to refine integrated models of Escherichia coli and Salmonella typhimurium, and experimentally validated some of the algorithm's suggested refinements. The adjusted E. coli model showed improved accuracy …


Distributed Power Balancing For The Freedm System, Rav Akella, Fanjun Meng, Derek Ditch, Bruce M. Mcmillin, Mariesa Crow Oct 2010

Distributed Power Balancing For The Freedm System, Rav Akella, Fanjun Meng, Derek Ditch, Bruce M. Mcmillin, Mariesa Crow

Computer Science Faculty Research & Creative Works

The FREEDM microgrid is a test bed for a smart grid integrated with Distributed Grid Intelligence (DGI) to efficiently manage the distribution and storage of renewable energy. Within the FREEDM system, DGI applies distributed algorithms in a unique way to achieve economically feasible utilization and storage of alternative energy sources in a distributed fashion. The FREEDM microgrid consists of residential or industrial nodes with each node running a portion of the DGI process called Intelligent Energy Management (IEM). Such IEM nodes within FREEDM coordinate among themselves to efficiently and economically manage their power generation, utility and storage. Among a variety …


Optimized Waveform Relaxation Solution Of Electromagnetic And Circuit Problems, Martin J. Gander, Albert E. Ruehli Oct 2010

Optimized Waveform Relaxation Solution Of Electromagnetic And Circuit Problems, Martin J. Gander, Albert E. Ruehli

Electrical and Computer Engineering Faculty Research & Creative Works

New algorithms are needed to solve electromagnetic problems using today's widely available parallel processors. In this paper, we show that applying the optimized waveform relaxation approach to a partial element equivalent circuit will yield a powerful technique for solving electromagnetic problems with the potential for a large number of parallel processor nodes.


Pso Tuned Flatness Based Control Of A Magnetic Levitation System, Ganesh K. Venayagamoorthy, E. C. Anene Oct 2010

Pso Tuned Flatness Based Control Of A Magnetic Levitation System, Ganesh K. Venayagamoorthy, E. C. Anene

Electrical and Computer Engineering Faculty Research & Creative Works

Investigation on the application of flatness-based feedback linearization to the magnetic levitation model of INTECOTm Maglev system is presented in this paper. The MAGLEV system dynamics studied consists of a set of third order nonlinear differential equations. Using computational techniques proposed by Levine, it is verified that the ball position is the flat output. The derived flat output is applied in the construction of a nonlinear control law used to control the levitation to a set point as well as tracking a sine function trajectory. The controller gains are obtained and optimized using particle swarm optimization. The simulation results compared …


The Effect Of Ionic Dissolution Products Of Ca-Sr-Na-Zn-Si Bioactive Glass On In Vitro Cytocompatibility, S. Murphy, A. W. Wren, Mark R. Towler, D. Boyd Oct 2010

The Effect Of Ionic Dissolution Products Of Ca-Sr-Na-Zn-Si Bioactive Glass On In Vitro Cytocompatibility, S. Murphy, A. W. Wren, Mark R. Towler, D. Boyd

Chemical and Biochemical Engineering Faculty Research & Creative Works

Many commercial bone grafts cannot regenerate healthy bone in place of diseased bone. Bioactive glasses have received much attention in this regard due to the ability of their ionic dissolution products to promote cell proliferation, cell differentiation and activate gene expression. Through the incorporation of certain ions, bioactive glasses can become therapeutic for specific pathological situations. Calcium-strontium-sodium-zinc-silicate glass bone grafts have been shown to release therapeutic levels of zinc and strontium, however the in vitro compatibility of these materials is yet to be reported. In this study, the in vitro cytocompatibility of three different calcium-strontium-sodium-zinc-silicate glasses was examined as a …


Comparison Of Antibacterial Properties Of Commercial Bone Cements And Fillers With A Zinc-Based Glass Polyalkenoate Cement, A. W. Wren, N. M. Cummins, Mark R. Towler Oct 2010

Comparison Of Antibacterial Properties Of Commercial Bone Cements And Fillers With A Zinc-Based Glass Polyalkenoate Cement, A. W. Wren, N. M. Cummins, Mark R. Towler

Chemical and Biochemical Engineering Faculty Research & Creative Works

Postoperative infection following invasive surgical procedures is a significant cause for concern, particularly in spinal reconstructive surgery. The objective of this study is to compare the antibacterial efficacy of a novel zinc-based glass polyalkenoate cement (Zn-GPC) based on 0.04SrO-0.12CaO-0.36ZnO- 0.48SiO2 glass, to a number of commercially available bone cements and fillers including Simplex P + Tobramycin (STob), Spineplex (Spine) and Novabone Putty (NPut). The agar diffusion test was performed on each material against Escherichia coli, Staphlococcus epidermidis, Pseudomonas aeruginosa and Staphlococcus Aureus. STob was found to produce large inhibition zones in each …


Uncertainty Quantification Integrated To Cfd Modeling Of Synthetic Jet Actuators, Srikanth Adya, Daoru Frank Han, Serhat Hosder Sep 2010

Uncertainty Quantification Integrated To Cfd Modeling Of Synthetic Jet Actuators, Srikanth Adya, Daoru Frank Han, Serhat Hosder

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The Point-Collocation Non-intrusive Polynomial Chaos (NIPC) method has been applied to a stochastic synthetic jet actuator problem used as one of the test cases in the CFDVAL2004 workshop to demonstrate the integration of computationally efficient uncertainty quantification to the high-fidelity CFD modeling of synthetic jet actuators. The test case included the simulation of an actuator generating a synthetic jet issued into quiescent air. The Point-Collocation NIPC method is used to quantify the uncertainty in the long-time averaged u and v-velocities at several locations in the flow field due to the uniformly distributed uncertainty introduced in the amplitude and frequency of …


Coated Steel Rebar For Enhanced Concrete-Steel Bond Strength And Corrosion Resistance, Genda Chen, Jeffery S. Volz, Richard K. Brow, Dongming Yan, Signo Tadeu Dos Reis, Chenglin Wu, Fujian Tang, Charles R. Werner, Xing Tao Sep 2010

Coated Steel Rebar For Enhanced Concrete-Steel Bond Strength And Corrosion Resistance, Genda Chen, Jeffery S. Volz, Richard K. Brow, Dongming Yan, Signo Tadeu Dos Reis, Chenglin Wu, Fujian Tang, Charles R. Werner, Xing Tao

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

This report summarizes the findings and recommendations on the use of enamel coating in reinforced concrete structures both for bond strength and corrosion resistance of steel rebar. Extensive laboratory tests were conducted to characterize the properties of one- and two-layer enamel coatings. Pseudostatic tests were performed with pullout, beam and column specimens to characterize mechanical properties and develop design equations for the development length of steel rebar in lap splice and anchorage areas. The splice length equation was validated with the testing of large-scale columns under cyclic loading. For corrosion properties, ponding, salt spray, accelerated corrosion, potentiodynamic and electrochemical impedance …


Adaptive Quadrant Filter Based Phase Locked Loop System, L. Shi, Mariesa Crow Sep 2010

Adaptive Quadrant Filter Based Phase Locked Loop System, L. Shi, Mariesa Crow

Electrical and Computer Engineering Faculty Research & Creative Works

Phase-Locked-Loop (PLL) is one of the key technologies extensively used in grid connected power electronics system. A good PLL system can detect the grid phase angle and frequency fast and accurately, and additionally it can extract the positive sequence (or fundamental component for single phase system) exactly. In real applications, source signal (voltage or current) sensed for PLL usually includes harmonic distortion, unbalanced components, noises and frequency variations. Conventional PLL strategy cannot solve all the problems, especially the unbalanced and harmonic distortion. There is a trade-off between the dynamic response and phase angle tracking accuracy. Different PLL solutions are proposed …


Design Of A Conditioner For Smoothing Wind Turbine Output Power, Murali Bottu, Mariesa Crow, A. Curt Elmore Sep 2010

Design Of A Conditioner For Smoothing Wind Turbine Output Power, Murali Bottu, Mariesa Crow, A. Curt Elmore

Electrical and Computer Engineering Faculty Research & Creative Works

As a result of wind speed intermittency, highly variable wind power output can adversely impact local loads. We propose a conditioner to smooth the variable wind power by utilizing the energy of an ultracapacitor. The conditioner is based on a single phase voltage source inverter (VSI) connected between the grid interconnection point and the ultracapacitor. The shunt VSI injects or absorbs active power from the line to smooth the wind power by utilizing the short term storage capabilities of the ultracapacitor. The ultracapacitor is connected to the DC link through a DC-DC converter, which maintains the voltage of the DC …


Hamiltonian Theory Based Coordinated Nonlinear Control Of Generator Excitation And Statcoms, Keyou Wang, Mariesa Crow Sep 2010

Hamiltonian Theory Based Coordinated Nonlinear Control Of Generator Excitation And Statcoms, Keyou Wang, Mariesa Crow

Electrical and Computer Engineering Faculty Research & Creative Works

A coordinated controller for generator excitation and STATCOMs is studied based on the Hamiltonian function method. The Hamiltonian realization structure for multimachine power systems including STATCOMs is developed leading to a proposed coordinated scheme of excitation control and STATCOM control. Simulation results illustrate the effectiveness of the proposed control strategy.


Solving Multi-Scale Low Frequency Electromagnetic Problems, Zhi Guo Qian, Mao Kun Li, Zu Hui Ma, Li (Lijun) Jun Jiang, Weng Cho Chew Aug 2010

Solving Multi-Scale Low Frequency Electromagnetic Problems, Zhi Guo Qian, Mao Kun Li, Zu Hui Ma, Li (Lijun) Jun Jiang, Weng Cho Chew

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, we will discuss two methods to tackle the low-frequency, multi-scale electromagnetics problem. First we will discuss the augmented electric field integral equation (AEFIE), and then, we will discuss the equivalence principle algorithm (EPA). The AEFIE allows the solution of such problems without the need to perform a loop search of a complex structure. The EPA allows the separation of circuit physics from wave physics in a multiscale problem. Hybridization of these two methods will be discussed.


Multi-Axis Planning System (Maps) For Hybrid Laser Metal Deposition Processes, Frank W. Liou, Jianzhong Ruan, Todd E. Sparks Aug 2010

Multi-Axis Planning System (Maps) For Hybrid Laser Metal Deposition Processes, Frank W. Liou, Jianzhong Ruan, Todd E. Sparks

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This paper summarizes the research and development of a Multi-Axis Planning System (MAPS) for hybrid laser metal deposition processes. The project goal is to enable the current direct metal deposition systems to fully control and utilize multi-axis capability to make complex parts. MAPS allows fully automated process planning for multi-axis layered manufacturing to control direct metal deposition machines for automated fabrication. Such a capability will lead to dramatic reductions in lead time and manufacturing costs for high-value, low-volume components with high performance material. The overall approach, slicing algorithm, machine simulation for planning validation, and the planning results will be presented.


Computer Aided Contour Profiling Of High Strength Deposits, Sriram Praneeth Isanaka, Amar Bala Sridhar, Frank W. Liou, Joseph William Newkirk Aug 2010

Computer Aided Contour Profiling Of High Strength Deposits, Sriram Praneeth Isanaka, Amar Bala Sridhar, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Additive manufacturing processes suffer from the effect of ripples, edge rounding and surface variations. To reduce their effect, ideal process parameters for the laser deposition process were investigated. Also, a new method was identified to analyze deposits by accurately plotting their contours. This was achieved through point cloud data of the deposits generated using coordinate measurement and 3D scanning. Curve fitting was performed on the data in Matlab to generate the contours of the deposit. The intercept values, heights, and contact angle of the curves give an indication of the uniformity of deposits and aid in reducing defects.


Freeze Extrusion Fabrication Of 13-93 Bioactive Glass Scaffolds For Bone Repair, Tieshu Huang, Nikhil D. Doiphode, M. N. Rahaman, Ming-Chuan Leu, B. Sonny Bal, D. E. Day Aug 2010

Freeze Extrusion Fabrication Of 13-93 Bioactive Glass Scaffolds For Bone Repair, Tieshu Huang, Nikhil D. Doiphode, M. N. Rahaman, Ming-Chuan Leu, B. Sonny Bal, D. E. Day

Materials Science and Engineering Faculty Research & Creative Works

There is an increasing demand for synthetic scaffolds with the requisite biocompatibility, internal architecture, and mechanical properties for the bone repair and regeneration. In this work, scaffolds of a silicate bioactive glass (13-93) were prepared by a freeze extrusion fabrication (FEF) method and evaluated in vitro for potential applications in bone repair and regeneration. The process parameters for FEF production of scaffolds with the requisite microstructural characteristics, as well as the mechanical and cell culture response of the scaffolds were evaluated. After binder burnout and sintering (60 min at 700°C), the scaffolds consisted of a dense glass network with interpenetrating …


Development Of A Low Cost Imaging System For A Laser Metal Deposition Process, Shyam Barua, Todd E. Sparks, Frank W. Liou Aug 2010

Development Of A Low Cost Imaging System For A Laser Metal Deposition Process, Shyam Barua, Todd E. Sparks, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The size of the melt pool created by the laser is one of the most important quality characteristic in a laser metal deposition process. This paper discusses the development of a low-cost vision system to automatically determine the size of the melt pool for in-process control. To cope with the intense infrared signal from the laser and melt pool, external ultraviolet illumination is paired with narrow bandpass filters on a usb microscope to achieve a clear image of the melt pool. The sensitivity of the melt pool to changes in system parameters and various substrate materials are also evaluated.


Effect Of Different Graphite Materials On Electrical Conductivity And Flexural Strength Of Bipolar Plates Fabricated By Selective Laser Sintering, Nannan Guo, Ming-Chuan Leu Aug 2010

Effect Of Different Graphite Materials On Electrical Conductivity And Flexural Strength Of Bipolar Plates Fabricated By Selective Laser Sintering, Nannan Guo, Ming-Chuan Leu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Graphite is an excellent material for bipolar plates used in Proton Exchange Membrane (PEM) fuel cell due to its great chemical resistance, but the brittle nature makes it difficult to manufacture. Selective Laser Sintering (SLS) based on layer-by-layer manufacturing technology can fabricate graphite bipolar plates with complex gas flow channels. To improve the performance of bipolar plates including electrical conductivity and flexural strength, different graphite materials (natural graphite, synthetic graphite, carbon black, and carbon fiber) were investigated to fabricate test samples. These samples then went through post processing including carbonization and infiltration. The results show that bipolar plates with electrical …


Laser Based Rapid Manufacturing Of Metallic Gas Diffusion Layers For Pem Fuel Cells, Gargi Tandra, Todd E. Sparks, Shyam Barua, Nikhil P. Kulkarni, Frank W. Liou Aug 2010

Laser Based Rapid Manufacturing Of Metallic Gas Diffusion Layers For Pem Fuel Cells, Gargi Tandra, Todd E. Sparks, Shyam Barua, Nikhil P. Kulkarni, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Gas Diffusion layers (GDL’s) are an essential component of Polymer Electrolyte Membrane Fuel cells (PEMFC’s) which aid in thermal & electrical conductivities, water management and act as backup layers for the membrane electrode assemblies. This paper summarizes the effort to prototype metallic GDL designs using a miniature laser deposition system developed at Missouri University of Science & Technology. The pore sizes are controlled by masking the diverging laser beam using stainless steel masks of varying sizes and shapes. The through pore feature and further treatment of the GDL’s for hydrophobicity reduces the water management issue and thereby increases the performance …


Selective Laser Sintering And Freeze Extrusion Fabrication Of Scaffolds For Bone Repair Using 13-93 Bioactive Glass: A Comparison, Krishna C. R. Kolan, Nikhil P. Doiphode, Ming-Chuan Leu Aug 2010

Selective Laser Sintering And Freeze Extrusion Fabrication Of Scaffolds For Bone Repair Using 13-93 Bioactive Glass: A Comparison, Krishna C. R. Kolan, Nikhil P. Doiphode, Ming-Chuan Leu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

13-93 glass is a third-generation bioactive material which accelerates the bone’s natural ability to heal by itself through bonding with surrounding tissues. It is an important requirement for synthetic scaffolds to maintain their bioactivity and mechanical strength with a porous internal architecture comparable to that of a human bone. Additive manufacturing technologies provide a better control over design and fabrication of porous structures than conventional methods. In this paper, we discuss and compare some of the common aspects in the scaffold fabrication using two such processes, viz. selective laser sintering (SLS) and freeze extrusion fabrication (FEF). Scaffolds fabricated using each …


Mea Manufacturing Using An Additive Manufacturing Process To Deposit A Catalyst Pattern In An Mea And Its Impact On Cost Reduction, Nikhil P. Kulkarni, Todd E. Sparks, Gargi Tandra, Frank W. Liou Aug 2010

Mea Manufacturing Using An Additive Manufacturing Process To Deposit A Catalyst Pattern In An Mea And Its Impact On Cost Reduction, Nikhil P. Kulkarni, Todd E. Sparks, Gargi Tandra, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The manufacturing of a fuel cell Membrane Electrode Assembly (MEA) is a significant cost driver in polymer-electrolyte membrane (PEM) fuel cell technologies, primarily due to the inclusion of expensive materials in the catalyst layer. The selective deposition of a catalyst on the MEA of a fuel cell can drastically reduce the costs depending upon the catalyst, method used for deposition, and production volume. In this paper, testing and analysis of a novel catalyst iridium oxide is discussed. The performance of the catalyst will be compared with the conventional catalysts which will give us an estimate of its effectiveness however, in …


Uncertainty Analysis In Laser Deposition Finish Machining Operations, Jomy Francis, Todd E. Sparks, Frank W. Liou Aug 2010

Uncertainty Analysis In Laser Deposition Finish Machining Operations, Jomy Francis, Todd E. Sparks, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The Laser Aided Manufacturing Process (LAMP) from Missouri S&T is a laser based metals rapid manufacturing process that uses machining to improve the final part's surface finish. When free-form machining, the absence of enough deposited material results in inconsistent scallop heights which result in poor surface finish or incorrect geometry in the final part. This paper investigates a probabilistic approach to various uncertainties involved in the deposition and subsequent machining of an arbitrary part. Furthermore, this paper analyses the machine errors which makes the response of Scallop Height to exceed the predefined maximum scallop height when traveling along the tool …


Optimization Of Selective Laser Sintering Process For Fabrication Of Zirconium Diboride Parts, Ming-Chuan Leu, Shashwatashish Pattnaik, Greg Hilmas Aug 2010

Optimization Of Selective Laser Sintering Process For Fabrication Of Zirconium Diboride Parts, Ming-Chuan Leu, Shashwatashish Pattnaik, Greg Hilmas

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Selective Laser Sintering (SLS) was investigated to fabricate Zirconium Diboride (ZrB2) parts for ultra-high temperature applications. Experiments were conducted to determine values of SLS process parameters (laser power, scan speed, line spacing, and layer thickness) that can be used to build ZrB2 parts with high integrity and sharp geometrical features. A sacrificial plate with a proper number of layers (determined from experimentation) separated from the main part was built in order to reduce thermal gradients when building the main part. The sacrificial plate was found to assist in eliminating cracks in the bottom of the main part. …


Selective Laser Sintering Of 13-93 Bioactive Glass, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Mariano Garcia Velez Aug 2010

Selective Laser Sintering Of 13-93 Bioactive Glass, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Mariano Garcia Velez

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Bioactive glasses are more promising than biopolymers in fabricating scaffolds for bone tissue repair because they convert to hydroxyapatite, when implanted in vivo. Both direct and indirect selective laser sintering (SLS) methods of 13-93 bioactive glass were considered in this research to study the feasibility of fabricating scaffolds for bone repair applications. Stearic acid was used as the binder in the indirect method to fabricate the scaffolds. The green scaffolds underwent binder burnout and sintering at various soaking conditions between 675⁰C and 700⁰C, achieving a maximum compressive strength of 23.6 MPa, which is higher than that of the human cancellous …


Electrical Modelling Of Temperature Distributions In On-Chip Interconnects, Packaging, And 3d Integration, Lijun Jiang, Chuan Xu, Howard Smith, Barry Rubin, Alina Deutsch, Alain Caron Aug 2010

Electrical Modelling Of Temperature Distributions In On-Chip Interconnects, Packaging, And 3d Integration, Lijun Jiang, Chuan Xu, Howard Smith, Barry Rubin, Alina Deutsch, Alain Caron

Electrical and Computer Engineering Faculty Research & Creative Works

In this talk, we will introduce a novel methodology using existing electromagnetic modelling tools for interconnect and packaging structures to simulate and model the temperature distribution without major modifications to these tools or simulated structures. This methodology can easily be integrated with the chip technology information and frame an electrical circuit simulator into an automatic, template-based simulation and optimization flow. A new accurate closed-form thermal model is further developed to simplify unnecessary object details. The model allows an equivalent medium with effective thermal conductivity (isotropic or anisotropic) to replace details in non-critical regions accurately so that complex interconnect structures can …


Supplement No. 2 To The North American Specification For The Design Of Cold-Formed Steel Structural Members, 2007 Edition, American Iron And Steel Institute Aug 2010

Supplement No. 2 To The North American Specification For The Design Of Cold-Formed Steel Structural Members, 2007 Edition, American Iron And Steel Institute

American Iron and Steel Institute (AISI) Specifications, Standards, Manuals and Research Reports (1946 - present)

No abstract provided.


A Molecular Dynamics Study On The Transport Of A Charged Biomolecule In A Polymeric Adsorbent Medium And Its Adsorption Onto A Charged Ligand, Enrico Riccardi, Jee-Ching Wang, Athanasios I. Liapis Aug 2010

A Molecular Dynamics Study On The Transport Of A Charged Biomolecule In A Polymeric Adsorbent Medium And Its Adsorption Onto A Charged Ligand, Enrico Riccardi, Jee-Ching Wang, Athanasios I. Liapis

Chemical and Biochemical Engineering Faculty Research & Creative Works

The transport of a charged adsorbate biomolecule in a porous polymeric adsorbent medium and its adsorption onto the covalently immobilized ligands have been modeled and investigated using molecular dynamics modeling and simulations as the third part of a novel fundamental methodology developed for studying ion-exchange chromatography based bioseparations. To overcome computational challenges, a novel simulation approach is devised where appropriate atomistic and coarse grain models are employed simultaneously and the transport of the adsorbate is characterized through a number of locations representative of the progress of the transport process. The adsorbate biomolecule for the system studied in this work changes …


A New Methodology For Hydrodynamic Similarity In Bubble Columns, Ashfaq Shaikh, Muthanna H. Al-Dahhan Aug 2010

A New Methodology For Hydrodynamic Similarity In Bubble Columns, Ashfaq Shaikh, Muthanna H. Al-Dahhan

Chemical and Biochemical Engineering Faculty Research & Creative Works

Bubble Columns Are Widely Used in Chemical, Petrochemical, and Biochemical Industries for Various Processes Such as Alkylation, Oxidation, Chlorination, Wet Oxidation of Effluents, Etc. a New Hypothesis for Hydrodynamic Similarity that Can Be Subsequently Used for Scale-Up of Bubble Column Reactors Was Proposed. This Hypothesis Was Evaluated using Advanced Diagnostic Techniques. the Conditions of Similarity Where overall Gas Holdup and Radial Gas Holdup Profiles Were the Same, and Mismatch Where overall Gas Holdup Was the Same But Gas Holdup Radial Profiles Were Different, Were Identified. the Condition that Two Systems Must Operate in the Same Flow Regime to Be Hydrodynamically …


Local Gas Holdup In A Draft Tube Airlift Bioreactor, Hu Ping Luo, Muthanna H. Al-Dahhan Aug 2010

Local Gas Holdup In A Draft Tube Airlift Bioreactor, Hu Ping Luo, Muthanna H. Al-Dahhan

Chemical and Biochemical Engineering Faculty Research & Creative Works

Airlift Column Bioreactors Are Gas-Liquid Contact Devices Characterized by a Rising Channel and a Down Flow Channel Due to Gas Holdup Differences in These Two Channels. Local Gas Holdup Distribution Strongly Affects the overall Gas-Liquid Flow Dynamics in Airlift Columns. in This Work, Local Gas Holdup Distributions in a Draft Tube Airlift Column Covering Both Bubbly Flow and Churn-Turbulent Flow Regimes Have Been Studied using Computed Tomography (CT) Technique as Well as Conventional Techniques. the Radial and Axial Evolutions of the Gas Holdup Distribution Will Be Discussed, Together with the Effects of Superficial Gas Velocity and Geometry Parameters. the Obtained …