Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Theses/Dissertations

2014

Institution
Keyword
Publication

Articles 31 - 60 of 120

Full-Text Articles in Engineering

Composition Dependence Of The Flory-Huggins Interaction Parameter In Polymer Blends: Structural And Thermodynamic Calculations, Travis H. Russell Aug 2014

Composition Dependence Of The Flory-Huggins Interaction Parameter In Polymer Blends: Structural And Thermodynamic Calculations, Travis H. Russell

Doctoral Dissertations

Flory-Huggins Theory has been the basis for understanding polymer solvent and blended polymer thermodynamics for much of the last 60 years. Within this theory, a parameter (χ) [chi] was included to quantify the enthalpic energy of dispersion between distinct components. Thin film self-assembly of polymer melts and block copolymers depends critically on this parameter, and in application, χ has generally been assumed to be independent of the concentrations of the individual components of the system. However, Small-Angle Neutron Scattering data on isotopic polymer blends, such as polyethylene and deuterated polyethylene, have shown a roughly parabolic concentration dependency for …


Structural Dynamics And Charge Transport In Room Temperature Ionic Liquids, Philip James Griffin Aug 2014

Structural Dynamics And Charge Transport In Room Temperature Ionic Liquids, Philip James Griffin

Doctoral Dissertations

Room temperature ionic liquids are an important class of materials due to their chemical tunability and numerous advantageous physicochemical properties. As a result, ionic liquids are currently being investigated for use in a wide array of chemical and electrochemical applications. Despite their great potential, however, the relationship between the chemical structure and physicochemical properties of ionic liquids is not well understood.

To this end, this dissertation presents experimental studies of the reorientational structural dynamics and charge transport properties of a variety of room temperature ionic liquids using quasielastic light scattering spectroscopy and broadband dielectric spectroscopy.

Studies of a series of …


Theoretical Studies Of The Growth And Functionality Of Layered Materials, Wei Chen Aug 2014

Theoretical Studies Of The Growth And Functionality Of Layered Materials, Wei Chen

Doctoral Dissertations

In this thesis, we present several projects on the growth and functionality of layered materials, using density functional theory (DFT) method and phenomenological modeling approach. Beyond the understanding of growth mechanisms and exploration of properties, we propose novel avenues to realize controllable growth processes and layered materials with desirable properties. The contents have three major parts:

(1) Graphene growth on Cu(111) and Ni(111) substrates. We first demonstrate that the inherent multi-orientational degeneracy of the graphene islands on Cu(111) in the early stages of nucleation could result in the prevalence of grain boundaries (GBs). Next, we propose a possible solution to …


Quantum Tuning Of Plasmons In Ultrathin Metal Films, Ao Teng Aug 2014

Quantum Tuning Of Plasmons In Ultrathin Metal Films, Ao Teng

Doctoral Dissertations

The surface plasmon is a coherent charge density oscillation localized at a metal surface. It can couple with light and the resulting plasmon-polariton hybrid mode is confined to volumes that are much smaller than the classical diffraction limit of light. Nano-plasmonics is a rapidly evolving field where light manipulation at the nanoscale may lead to novel applications. However, as the size of plasmonic devices approaches the quantum-size regime, the macroscopic picture of plasmon may no longer be valid. To elucidate the influence of the discretization of the single particle spectrum on the collective plasmon response, we performed a systematic study …


Quantitative Data Extraction Using Spatial Fourier Transform In Inversion Shear Interferometer, Yanzeng Li Aug 2014

Quantitative Data Extraction Using Spatial Fourier Transform In Inversion Shear Interferometer, Yanzeng Li

Graduate Theses - Physics and Optical Engineering

Currently there are many interferometers used for testing wavefront, measuring the quality of optical elements, and detecting refractive index changes in a certain medium. Each interferometer has been constructed for a specific objective. Inversion shear interferometer is one of them. Compared to other interferometers, it has its own advantages, such as only being sensitive to coma aberration, but it has some limitations as well. It does not allow use of phase shifting technique. A novel inversion shear interferometer was invented using holographic lenses. By using the spatial carrier method, phase information of the wavefront was extracted. The breakthrough of the …


Gate Monte Carlo Simulations In A Cloud Computing Environment, Blake Austin Rowedder Aug 2014

Gate Monte Carlo Simulations In A Cloud Computing Environment, Blake Austin Rowedder

UNLV Theses, Dissertations, Professional Papers, and Capstones

The GEANT4-based GATE is a unique and powerful Monte Carlo (MC) platform, which provides a single code library allowing the simulation of specific medical physics applications, e.g. PET, SPECT, CT, radiotherapy, and hadron therapy. However, this rigorous yet flexible platform is used only sparingly in the clinic due to its lengthy calculation time. By accessing the powerful computational resources of a cloud computing environment, GATE's runtime can be significantly reduced to clinically feasible levels without the sizable investment of a local high performance cluster. This study investigated a reliable and efficient execution of GATE MC simulations using a commercial cloud …


Propagation Of An Optical Vortex In Fiber Arrays With Triangular Lattices, Muhammad Abdulrahman Mushref Aug 2014

Propagation Of An Optical Vortex In Fiber Arrays With Triangular Lattices, Muhammad Abdulrahman Mushref

Theses and Dissertations

The propagation of optical vortices (OVs) in linear and nonlinear media is an important field of research in science and engineering. The most important goal is to explore the properties of guiding dynamics for potential applications such as sensing, all-optical switching, frequency mixing and modulation. In this dissertation, we present analytical methods and numerical techniques to investigate the propagation of an optical vortex in fiber array waveguides. Analytically, we model wave propagation in a waveguide by coupled mode Equations as a simplified approximation. The beam propagation method (BPM) is also employed to numerically solve the paraxial wave Equation by finite …


Nanoscale Manipulation Of Pristine And Functionalized Freestanding Graphene Using Scanning Tunneling Microscopy, Matthew Ackerman Aug 2014

Nanoscale Manipulation Of Pristine And Functionalized Freestanding Graphene Using Scanning Tunneling Microscopy, Matthew Ackerman

Graduate Theses and Dissertations

Over the past ten years the 2D material graphene has attracted an enourmous amount of attention from researchers from across diciplines and all over the world. Many of its outstanding electronic properties are present only when it is not interacting with a substrate but is instead freestanding. In this work I demonstrate that pristine and functionalized freestanding graphene can be imaged using a scanning tunneling microscope (STM) and that imaging a flexible 2D surface is fundamentally different from imaging a bulk material due to the attraction between the STM tip and the sample. This attraction can be used to manipulate …


A Biophysical Understanding Of The Applications And Implications Of Nanomaterials, Nicholas Geitner Aug 2014

A Biophysical Understanding Of The Applications And Implications Of Nanomaterials, Nicholas Geitner

All Dissertations

The last few decades have seen an explosion in the study and application of nanomaterials that continues to grow at a dizzying pace. Despite exciting applications in nano-enabled electronics, materials, medicine, and environmental remediation, an understanding of the interactions of these materials with natural materials and systems and the resulting implications lags severely behind. The purpose of this Dissertation is to illuminate these interactions as well as develop novel environmental applications from a biophysical perspective. Following an introduction and literature review in Chapter 1, Chapters 2-4 will explore the application of dendritic polymers as novel and biocompatible oil dispersants for …


Characterizing Nanoparticle Size By Dynamic Light Scattering Technique (Dls), Marzia Zaman Aug 2014

Characterizing Nanoparticle Size By Dynamic Light Scattering Technique (Dls), Marzia Zaman

Graduate Theses and Dissertations

The Dynamic Light Scattering Technique was used to determine the size, shape and diffusion coefficient of nanoparticle. The intensity auto correlation functions of light scattered by particles in a solution were measured by using a photomultiplier tube and analyzed to get the relaxation rates for decay of intensity correlations, which correspond to the diffusion constants pertaining to the motion of the particle. In the case of nanorods there are two types of motion - translational and rotational. By dis-entangling the relaxation rates, corresponding to these two types of motion, the shape and size of nanoparticle could be characterized. These experiments, …


Optimization Of Plasmon Decay Through Scattering And Hot Electron Transfer, Drew Dejarnette Aug 2014

Optimization Of Plasmon Decay Through Scattering And Hot Electron Transfer, Drew Dejarnette

Graduate Theses and Dissertations

Light incident on metal nanoparticles induce localized surface oscillations of conductive electrons, called plasmons, which is a means to control and manipulate light. Excited plasmons decay as either thermal energy as absorbed phonons or electromagnetic energy as scattered photons. An additional decay pathway for plasmons can exist for gold nanoparticles situated on graphene. Excited plasmons can decay directly to the graphene as through hot electron transfer. This dissertation begins by computational analysis of plasmon resonance energy and bandwidth as a function of particle size, shape, and dielectric environment in addition to diffractive coupled in lattices creating a Fano resonance. With …


Development And Applications Of The Expanded Equivalent Fluid Method, Bharath Kumar Kandula Aug 2014

Development And Applications Of The Expanded Equivalent Fluid Method, Bharath Kumar Kandula

Dissertations

Ocean acoustics is the study of sound in the oceans. Electromagnetic waves attenuate rapidly in the water medium. Sound is the best means to transmit information underwater. Computational numerical simulations play an important role in ocean acoustics. Simulations of acoustic propagation in the oceans are challenging due to the complexities involved in the ocean environment. Different methods have been developed to simulate underwater sound propagation. The Parabolic-Equation (PE) method is the best choice in several ocean acoustic problems. In shallow water acoustic experiments, sound loses some of its energy when it interacts with the bottom. An equivalent fluid technique was …


Thick Target Yield Of Th-229 Via Low Energy Proton Bombardment Of Th-232, Justin Reed Griswold Aug 2014

Thick Target Yield Of Th-229 Via Low Energy Proton Bombardment Of Th-232, Justin Reed Griswold

Masters Theses

Actinium-225 is one of the more effective radioisotopes used in alpha radioimmunotherapy. Due to its ten-day half-life, it is more efficient to create its precursor, 229Th [Thorium-229] (t1/2[half-life] = 7932 ± 55 years). In this work, 229Th was produced via 40 MeV [Mega electron Volts] proton bombardment of a thick 232Th [Thorium-232] target. The irradiation took place at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Lab (ORNL). The target, consisting of 23 stacked natural thorium foils (137 mg/cm2 [milligrams per square centimeter] each), was irradiated with 50 nA [nanoamps] of …


Radiation-Induced Radicals In Polyurea-Crosslinked Silica Aerogel, Benjamin Michael Walters Aug 2014

Radiation-Induced Radicals In Polyurea-Crosslinked Silica Aerogel, Benjamin Michael Walters

Masters Theses

Free radicals are atoms or molecules with an odd number of electrons in an outer shell. Since electrons typically occur in pairs, this leaves one electron that is unpaired. In seek of another electron to pair with, free radicals react with and steal electrons from neighboring molecules, which then become free radicals themselves. This can start a chain reaction, cascading into large scale damage.

Ionizing radiation can tear through molecules, just as bullets can tear through things that we see. If free radicals can be detected, and seen to increase in a material upon radiation exposure, this can indicate molecular …


The Prediction Of Airborne And Structure-Borne Noise Potential For A Tire, Nicholas Sakamoto Jul 2014

The Prediction Of Airborne And Structure-Borne Noise Potential For A Tire, Nicholas Sakamoto

Open Access Theses

Tire/pavement interaction noise is a major component of both exterior pass-by noise and vehicle interior noise. The current testing methods for ranking tires from loud to quiet require expensive equipment, multiple tires, and/or long experimental set-up and run times. If a laboratory based off-vehicle test could be used to identify the airborne and structure-borne potential of a tire from its dynamic characteristics, a relative ranking of a large group of tires could be performed at relatively modest expense. This would provide a smaller sample set of tires for follow-up testing and thus save expense for automobile OEMs. The focus of …


Study Of A Generalized Empirical Model For Predicting Pressure Drop For Internal Flows, Tejas Anup Pant Jul 2014

Study Of A Generalized Empirical Model For Predicting Pressure Drop For Internal Flows, Tejas Anup Pant

Open Access Theses

A generalized empirical model for estimating the pressure drop across a channel for a given massflow rate is studied through computational fluid dynamics (CFD) simulations. It is observed that for developing laminar and turbulent flow through channels and pipes of arbitrary cross-section, the variation in the pressure drop between any two points in the flow direction with massflow rate can be well approximated by a second degree expression in massflow rate which is referred to as the empirical model in this study. In the first part of this study, a correlation between the pressure gradient and the massflow rate is …


Energy Efficient Hybrid Computing Systems Using Spin Devices, Mrigank Sharad Jul 2014

Energy Efficient Hybrid Computing Systems Using Spin Devices, Mrigank Sharad

Open Access Dissertations

Emerging spin-devices like magnetic tunnel junctions (MTJ's), spin-valves and domain wall magnets (DWM) have opened new avenues for spin-based logic design. This work explored potential computing applications which can exploit such devices for higher energy-efficiency and performance. The proposed applications involve hybrid design schemes, where charge-based devices supplement the spin-devices, to gain large benefits at the system level. As an example, lateral spin valves (LSV) involve switching of nanomagnets using spin-polarized current injection through a metallic channel such as Cu. Such spin-torque based devices possess several interesting properties that can be exploited for ultra-low power computation. Analog characteristic of spin …


Optical Position Sensing In Free Space Optical Communication, Muhammad Salman Bashir Jul 2014

Optical Position Sensing In Free Space Optical Communication, Muhammad Salman Bashir

Open Access Theses

In this thesis the performance of three estimators, (center of gravity, template matching and maximum likelihood (MLE)) to estimate the center of the beam on a photoemissive receiver array in a Free Space Optics (FSO) system, is compared in terms of mean square error. Simulations have been conducted in Matlab by generating a two dimensional nonhomogeneous Poisson process, and, mean square error is computed for three estimators. The cases of continuous and discrete arrays are also considered for various levels of signal-to-noise (SNR) ratio. Simulations have shown that the MLE gives the least mean squared error and especially performs significantly …


Nickel Aluminum Shape Memory Alloys Via Molecular Dynamics, Keith Ryan Morrison Jul 2014

Nickel Aluminum Shape Memory Alloys Via Molecular Dynamics, Keith Ryan Morrison

Open Access Theses

Shape memory materials are an important class of active materials with a wide range of applications in the aerospace, biomedical, and automobile industries. These materials exhibit the two unique properties of shape memory and superelasticity. Shape memory is the ability to recover its original shape by applying heat after undergoing large deformations. Superelasticity is the ability to undergo large, reversible deformations (up to 10%) that revert back when the load is removed. These special properties originate from a reversible, diffusionless solid-solid phase transformation that occurs between a high temperature austenite phase and a low temperature martensite phase. The development of …


Quantum Levitation Using Metamaterials, Venkatesh K. Pappakrishnan Jul 2014

Quantum Levitation Using Metamaterials, Venkatesh K. Pappakrishnan

Doctoral Dissertations

The emergence of an attractive vacuum force (Casimir force) between two purely dielectric materials can lead to an increase in the friction and the stiction effects in nanoscale devices, resulting in degradation or decreased performance. Thus, it is of high practical importance that the conditions for the reversal of the Casimir force from attractive to repulsive are identified. Although the repulsive Casimir force has been considered for high dielectric materials as an intermediate (between the plates) medium, so far no realistic system has been proposed that can demonstrate quantum levitation with air/vacuum as a host medium. Since air is the …


On Electromagnetic And Quantum Invisibility, Pattabhiraju Chowdary Mundru Jul 2014

On Electromagnetic And Quantum Invisibility, Pattabhiraju Chowdary Mundru

Doctoral Dissertations

The principle objective of this dissertation is to investigate the fundamental properties of electromagnetic wave interactions with artificially fabricated materials i.e., metamaterials for application in advanced stealth technology called electromagnetic cloaking. The main goal is to theoretically design a metamaterial shell around an object that completely eliminates the dipolar and higher order multipolar scattering, thus making the object invisible.

In this context, we developed a quasi-effective medium theory that determines the optical properties of multi-layered-composites beyond the quasi-static limit. The proposed theory exactly reproduces the far-field scattering/extinction cross sections through an iterative process in which mode-dependent quasi-effective impedances of the …


Investigation And Optimization Of A New Compact Superconducting Cavity For Deflecting And Crabbing Applications, Subashini Uddika De Silva Jul 2014

Investigation And Optimization Of A New Compact Superconducting Cavity For Deflecting And Crabbing Applications, Subashini Uddika De Silva

Physics Theses & Dissertations

Deflecting and crabbing structures have many applications in current accelerator systems. The primary use of a deflecting cavity is to separate a single beam into multiple beams. A crabbing cavity enables the head-on collision at the interaction point in particle colliders in order to increase the luminosity. The early uses of the deflecting structures have been in the early 1960s: these structures were disk loaded structures operating at room temperature. The crabbing structure which was installed at the NEK electron-positron collider was the first and only operational superconducting cavity of that kind. The most common design of superconducting deflecting and …


Plasmonic Optical Sensors: Performance Analysis And Engineering Towards Biosensing, Peipei Jia Jun 2014

Plasmonic Optical Sensors: Performance Analysis And Engineering Towards Biosensing, Peipei Jia

Electronic Thesis and Dissertation Repository

Surface plasmon resonance (SPR) sensing for quantitative analysis of chemical reactions and biological interactions has become one of the most promising applications of plasmonics. This thesis focuses on performance analysis for plasmonic sensors and implementation of plamonic optical sensors with novel nanofabrication techniques.

A universal performance analysis model is established for general two-dimensional plasmonic sensors. This model is based on the fundamental facts of surface plasmon theory. The sensitivity only depends on excitation light wavelength as well as dielectric properties of metal and dielectrics. The expression involves no structure-specified parameters, which validates this formula in broad cases of periodic, quasiperiodic …


Analysis Of Critical Behavior In Magnetic Materials, Dustin David Belyea Jun 2014

Analysis Of Critical Behavior In Magnetic Materials, Dustin David Belyea

USF Tampa Graduate Theses and Dissertations

This work contains a broad study of a variety of magnetic materials undergoing second order phase transitions. In general this leads to an overall increase in information and analytical methods to further the field of magnetocalorics. Specifically, critical aspects of magnetocaloric materials were compared within systems in relation to structure, stoichiometry, magnetic minority phases and magnetic contaminants. Detailed analyses were developed to quantify techniques which were in the past used mainly in a qualitative way, leading to a more complete understanding of how critical phenomena impacts the magnetocaloric response.


Insights Into The Epitaxial Relationships Between One-Dimensional Nanomaterials And Metal Catalyst Surfaces Using Density Functional Theory Calculations, Debosruti Dutta Jun 2014

Insights Into The Epitaxial Relationships Between One-Dimensional Nanomaterials And Metal Catalyst Surfaces Using Density Functional Theory Calculations, Debosruti Dutta

USF Tampa Graduate Theses and Dissertations

This dissertation involves the study of epitaxial behavior of one-dimensional nanomaterials like single-walled carbon nanotubes and Indium Arsenide nanowires grown on metallic catalyst surfaces. It has been previously observed in our novel microplasma based CVD growth of SWCNTs on Ni-Fe bimetallic nanoparticles that changes in the metal catalyst composition was accompanied by variations in the average metal-metal bond lengths of the nanoparticle and that in turn, affected nanotube chirality distributions. In this dissertation, we have developed a very simplistic model of the metal catalyst in order to explain the nanotube growth of specific nanotube chiralities on various Ni-Fe catalyst surfaces. …


Rubidium-Based Atomic Clock, Kate Miles Jun 2014

Rubidium-Based Atomic Clock, Kate Miles

Physics

In this paper we will explore the process of building an atomic clock from a function generator, go into an in-depth introductory discussion of the Datum LPRO, and examine how rubidium function generators work.


Lightweight Uav Launcher, Ben Miller, Christian Valoria, Corinne Warnock, Jake Coutlee Jun 2014

Lightweight Uav Launcher, Ben Miller, Christian Valoria, Corinne Warnock, Jake Coutlee

Mechanical Engineering

This report discusses the design, construction, and testing of a lightweight, portable UAV launcher. There is a current need for a small team of soldiers to launch a US Marine Tier II UAV in a remote location without transport. Research was conducted into existing UAV launcher designs and the pros and cons of each were recorded. This research served as a basis for concept generation during the initial design development stage. It was required that the design weigh less than 110 lbs, occupy a smaller volume than 48" x 24" 18" in its collapsed state, be portable by a single …


The Soft Mode Driven Dynamics Of Ferroelectric Perovskites At The Nanoscale: An Atomistic Study, Kevin Mccash May 2014

The Soft Mode Driven Dynamics Of Ferroelectric Perovskites At The Nanoscale: An Atomistic Study, Kevin Mccash

USF Tampa Graduate Theses and Dissertations

The discovery of ferroelectricity at the nanoscale has incited a lot of interest in perovskite ferroelectrics not only for their potential in device application but also for their potential to expand fundamental understanding of complex phenomena at very small size scales. Unfortunately, not much is known about the dynamics of ferroelectrics at this scale. Many of the widely held theories for ferroelectric materials are based on bulk dynamics which break down when applied to smaller scales. In an effort to increase understanding of nanoscale ferroelectric materials we use atomistic resolution computational simulations to investigate the dynamics of polar perovskites. Within …


Synthesis And Characterization Of Magnetic Nanowires Prepared By Chemical Vapor Deposition, Siwei Tang May 2014

Synthesis And Characterization Of Magnetic Nanowires Prepared By Chemical Vapor Deposition, Siwei Tang

Doctoral Dissertations

Various metal silicide and germanide magnetic nanowires were synthesized using a home-built CVD [chemical vapor deposition] system. The morphology, composition, and magnetic properties of the nanowires were studied and correlated with growth parameters such as temperature, pressure, time, and source-substrate distance.

One of the compositions targeted for synthesis was MnSi [manganese silicide]. In bulk, this material orders helimagnetically at Tc [curie temperature] = 30K, with a helical pitch of about 20 nm. After extensive study, we learned that the thickness of the silicon dioxide layer on the substrate is a critical parameter for the growth of MnSi nanowires. An …


Design Of A Micro-Focus X-Ray Source Validated By Model Protein Crystals, Lavanya Ramachandran May 2014

Design Of A Micro-Focus X-Ray Source Validated By Model Protein Crystals, Lavanya Ramachandran

Theses and Dissertations

The main objective of this thesis was to build a Laboratory Microfocus X-ray Source for Protein Crystallography (LMXS-PC), an X-ray source that would provide prospective users programmatic control and remote capability.

A study of the crystal was conducted using Photoactive Yellow protein (PYP) and cytochrome c nitrite reductase (ccNiR). The instrument was then tested by mounting the crystal in the instrument and collecting data.

The other objective of my research work was to determine the crystal structure of PYP using X-ray crystallography techniques. I attempted many trials in PYP crystal in an effort to achieve a high-quality diffraction pattern; however, …