Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Theses/Dissertations

2014

Institution
Keyword
Publication

Articles 61 - 90 of 120

Full-Text Articles in Engineering

Monitoring Changes In Hemodynamics Following Optogenetic Stimulation, Seth Thomas Frye May 2014

Monitoring Changes In Hemodynamics Following Optogenetic Stimulation, Seth Thomas Frye

Theses and Dissertations

The brain is composed of billions of neurons, all of which connected through a vast network. After years of study and applications of different technologies and techniques, there are still more questions than answers when it comes to the fundamental functions of the brain. This project aims to provide a new tool which can be used to gain a better understanding of the fundamental mechanisms that govern neurological processes inside the brain. In order for neural networks to operate, blood has to be supplied through neighboring blood vessels. As such, the increase or decrease in the blood supply has been …


Discrete Strain Engineering In Graphene, Cedric Marcus Horvath May 2014

Discrete Strain Engineering In Graphene, Cedric Marcus Horvath

Graduate Theses and Dissertations

Graphene has a number of fascinating mechanical and electrical properties. Strain engineering in graphene is the attempt to control its properties with mechanical strain. Previous research in this area has come up with an approach using a continuum theory to describe the strain induced gauge fields in graphene; however, this approach is only valid for small strains (5% at most). A discrete framework is being developed in Arkansas that can more accurately calculate the deformation (electrical) and (pseudo-)magnetic gauge fields created by large strains. Computational simulations were carried out and used to get discrete atomic positions for strained, suspended graphene …


Time Correlated Measurements Using Plastic Scintillators With Neutron-Photon Pulse Shape Discrimination, Norman Edison Richardson May 2014

Time Correlated Measurements Using Plastic Scintillators With Neutron-Photon Pulse Shape Discrimination, Norman Edison Richardson

UNLV Theses, Dissertations, Professional Papers, and Capstones

Since the beginning of the nuclear age, there has been a strong demand for the development of efficient technologies for the detection of ionizing radiation. According to the United States' Department of Energy, the accurate assessment of fissile materials is essential in achieving the nonproliferation goals of enhancing safety and security of nuclear fuel cycle and nuclear energy facilities [1]. Nuclear materials can be characterized by the measurement of prompt and delayed neutrons and gamma rays emitted in spontaneous or induced fission reactions [2] and neutrons emitted in fission reactions are the distinctive signatures of nuclear materials. Today, the most …


Properties Of Multiferroic Bifeo3 From First Principles, Dovran Rahmedov May 2014

Properties Of Multiferroic Bifeo3 From First Principles, Dovran Rahmedov

Graduate Theses and Dissertations

In this dissertation, a first-principle-based approach is developed to study magnetoelectric effect in multiferoic materials. Such approach has a significant predictive power and might serve as a guide to new experimental works. As we will discuss in the course of this work, it also gives an important insight to the underlying physics behind the experimentally observed phenomena.

We start by applying our method to investigate properties of a generic multiferroic material. We observe how magnetic susceptibility of such materials evolves with temperature and compare this evolution with the characteristic behavior of magnetic susceptibility for pure magnetic systems. Then we focus …


Nonlinear Processes In Multi-Mode Optical Fibers, Hamed Pourbeyram Kaleibar May 2014

Nonlinear Processes In Multi-Mode Optical Fibers, Hamed Pourbeyram Kaleibar

Theses and Dissertations

Nonlinear processes in optical fibers can affect data transmission and power carried by

optical fibers and can limit the bandwidth and the capacity of optical communications.

On the other hand nonlinear phenomena could be utilized to build in-fiber all-optical

light sources and amplifiers. In this thesis new peaks inside an optical fiber have been

generated using nonlinear processes. An intense green pump laser has been launched

into a short fiber and specific modes have been excited to generate two new peaks in

red and blue wavelengths, where two pump photons are annihilated to create two new

photons in red and …


The Construction And Characterization Of A Magneto-Optical Trap For Rubidium-87 And Electromagnetically-Induced Transparency In Rubidium-87 In A Vapor Cell, Yu Liu May 2014

The Construction And Characterization Of A Magneto-Optical Trap For Rubidium-87 And Electromagnetically-Induced Transparency In Rubidium-87 In A Vapor Cell, Yu Liu

Honors College Theses

Recent years have observed fast developments in neutral atomic vapor based quantum information storage technology. The technique utilizes light fields in the optical wavelength region as signal carrier and retriever and neutral atomic systems (e.g. single atoms, ensembles of atoms, atom-like defects in solids) as storage media. Photons are robust carriers of information due to their high velocity (c = 2.998 x 108 m/s) and ease of transportation (they propagate rectilinearly with low loss). Their high mobility, however, makes it a challenging task to spatially localize and therefore store them. Atoms (or atom-like systems), on the other hand, can …


Feasibility Analysis Of Large Length-Scale Thermocapillary Flow Experiment For The International Space Station, Samantha Jean Alberts Apr 2014

Feasibility Analysis Of Large Length-Scale Thermocapillary Flow Experiment For The International Space Station, Samantha Jean Alberts

Open Access Theses

The investigation of microgravity fluid dynamics emerged out of necessity with the advent of space exploration. In particular, capillary research took a leap forward in the 1960s with regards to liquid settling and interfacial dynamics. Due to inherent temperature variations in large spacecraft liquid systems, such as fuel tanks, forces develop on gas-liquid interfaces which induce thermocapillary flows. To date, thermocapillary flows have been studied in small, idealized research geometries usually under terrestrial conditions. The 1 to 3m lengths in current and future large tanks and hardware are designed based on hardware rather than research, which leaves spaceflight systems designers …


Drift-Flux Correlation Development For Two-Phase Flow In Rod Bundles, Collin M. Clark Apr 2014

Drift-Flux Correlation Development For Two-Phase Flow In Rod Bundles, Collin M. Clark

Open Access Theses

A rod bundle drift-flux correlation is developed with intended application across a wide range of two-phase flow conditions. Special consideration is made for fluid flow mechanisms at low liquid velocity and low pressure conditions. In these instances, gravitational forces from the density difference of the associated fluid phases are more significant. Secondary flow patterns may develop as a result and a drift-flux correlation would need to make appropriate adjustments. Earlier correlations may have increased error at these conditions if they have been formulated with respect to relatively higher pressures or flow rates. In the present work, area-average void fraction data …


An Experimental Evaluation Of Image Quality For Various Scenarios In A Chromotomographic System With A Spinning Prism, Kyle J. Dufaud Mar 2014

An Experimental Evaluation Of Image Quality For Various Scenarios In A Chromotomographic System With A Spinning Prism, Kyle J. Dufaud

Theses and Dissertations

A lab and eld based hyperspectral chromotomographic imager has been developed at the Air Force Institute of Technology. It is a prototype used to study the requirements for a space-based system. The imager uses a high speed visible band camera behind a direct-vision prism to image both spatial dimensions and the spectral dimension at the same time. Capturing all 3 simultaneously allows for the hyperspectral imaging of transient events. The prism multiplexes the spectral and spatial information, so tomographic reconstruction algorithms must be used to separate hyperspectral channels. Experiments were conducted to compare reconstructed image quality as a function of …


Electrical Characterization Of Spherical Copper Oxide Memristive Array Sensors, James P. Orta Mar 2014

Electrical Characterization Of Spherical Copper Oxide Memristive Array Sensors, James P. Orta

Theses and Dissertations

A new System Protection (SP) technology is explored by using electrical and mechanical interference-sensing devices that are implemented with granular memristive material. The granular materials consist of oxide-coated copper spheres with radii of about 700 µm that are placed in contact to produce thin oxide junctions which exhibit memristive behavior. Processes for etching, which compared acetic acid and nitric acid etches, and thermal oxidation at 100°C are performed and compared to produce copper spheres with a copper oxide layer over the sphere surface. Oxidized copper spheres are tested as sensor arrays by loading into a capillary tube in an aligned …


On The Growth Rate Of Turbulent Mixing Layers: A New Parametric Model, Jeffrey L. Freeman Mar 2014

On The Growth Rate Of Turbulent Mixing Layers: A New Parametric Model, Jeffrey L. Freeman

Master's Theses

A new parametric model for the growth rate of turbulent mixing layers is proposed. A database of experimental and numerical mixing layer studies was extracted from the literature to support this effort. The domain of the model was limited to planar, spatial, nonreacting, free shear layers that were not affected by artificial mixing enhancement techniques. The model is split into two parts which were each tuned to optimally fit the database; equations for an incompressible growth rate were derived from the error function velocity profile, and a function for a compressibility factor was generalized from existing theory on the convective …


Frequency Selective Detection Of Infrared Radiation In Uncooled Optical Nano-Antenna Array, Sushrut Modak Jan 2014

Frequency Selective Detection Of Infrared Radiation In Uncooled Optical Nano-Antenna Array, Sushrut Modak

Electronic Theses and Dissertations

Mid-infrared (mid-IR) detection and imaging over atmospheric transparent 3-5 μm and 8-12 μm bands are increasingly becoming important for various space, defense and civilian applications. Various kinds of microbolometers offer uncooled detection of IR radiation. However, broadband absorption of microbolometers makes them less sensitive to spectrally resolved detection of infrared radiation and the fabrication is also very tedious involving multiple complex lithography steps. In this study, we designed an optical nano-antenna array based detector with narrow frequency band of operation. The structure consists of a two-element antenna array comprised of a perforated metallic hole array coupled with an underneath disk …


Self-Heating Control Of Edge Emitting And Vertical Cavity Surface Emitting Lasers, Yu Zhang Jan 2014

Self-Heating Control Of Edge Emitting And Vertical Cavity Surface Emitting Lasers, Yu Zhang

Electronic Theses and Dissertations

Self-heating leads to temperature rise of laser diode and limits the output power, efficiency and modulation bandwidth due to increased loss and decreased differential gain. The main heat sources in laser diode during continuous wave operation are Joule heating and free carrier absorption loss. To control device self-heating, the epi structure needs to be designed with low electrical resistance and low absorption loss, while the heat flux must spread out of the device efficiently. This dissertation presents the control of self-heating of both edge emitting laser diodes and vertical cavity surface emitting lasers (VCSELs). For the 980nm high power edge …


Distribution Of Laser Induced Heating In Multi-Component Chalcogenide Glass And Its Associated Effects, Laura Sisken Jan 2014

Distribution Of Laser Induced Heating In Multi-Component Chalcogenide Glass And Its Associated Effects, Laura Sisken

Electronic Theses and Dissertations

Chalcogenide glasses are well known to have good transparency into the infrared spectrum. These glasses though tend to have low thresholds as compared to oxide glasses for photo-induced changes and thermally-induced changes. Material modification such as photo-induced darkening, bleaching, refractive index change, densification or expansion, ablation of crystallization have been demonstrated, and are typically induced by a thermal furnace-based heat treatment, an optical source such as a laser, or a combination of photo-thermal interactions. Solely employing laser-based heating has an advantage over a furnace, since one has the potential to be able to spatially modify the materials properties with much …


Highly-Sensitive Stoichiometric Analysis Of Yag Ceramics Using Laser-Induced Breakdown Spectroscopy (Libs), Jahromi, Ali Kazemi Jan 2014

Highly-Sensitive Stoichiometric Analysis Of Yag Ceramics Using Laser-Induced Breakdown Spectroscopy (Libs), Jahromi, Ali Kazemi

Electronic Theses and Dissertations

Transparent ceramics are an important class of optical materials with applications in high-strength windows, radiation detectors and high-power lasers. Despite the many successful developments of the past decades, their challenging fabrication still needs to be perfected to achieve a better consistency in optical quality. In particular, ternary phase materials such as Yttrium Aluminum Garnet (YAG, Y3Al5O12), a long standing high-power laser host, require a precise control of stoichiometry, often beyond the precision of current analytical techniques, in order to reduce scattering losses and the presence of deleterious point defects. This work explores the potential of Laser-Induced Breakdown Spectroscopy (LIBS) for …


High Resolution Time-Resolved Imaging System In The Vacuum Ultraviolet Region, Yuseong Jang Jan 2014

High Resolution Time-Resolved Imaging System In The Vacuum Ultraviolet Region, Yuseong Jang

Electronic Theses and Dissertations

High-power debris-free vacuum ultraviolet (VUV) light sources have applications in several scientific and engineering areas, such as high volume manufacturing lithography and inspection tools in the semiconductor industry, as well as other applications in material processing and photochemistry. For the past decades, the semiconductor industry has been driven by what is called "Moore's Law". The entire semiconductor industry relies on this rule, which requires chip makers to pack transistors more tightly with every new generation of chips, shrinking the size of transistors. The ability to solve roadmap challenges is, at least partly, proportional to our ability to measure them. The …


High Performance Three-Dimensional Display Based On Polymer-Stabilized Blue Phase Liquid Crystal, Yifan Liu Jan 2014

High Performance Three-Dimensional Display Based On Polymer-Stabilized Blue Phase Liquid Crystal, Yifan Liu

Electronic Theses and Dissertations

Autostereoscopic 2D/3D (two-dimension/three-dimension) switchable display has been attracting great interest in research and practical applications for several years. Among different autostereoscopic solutions, direction-multiplexed 3D displays based on microlens array or parallax barrier are viewed as the most promising candidates, due to their compatibility with conventional 2D display technologies. These 2D/3D switchable display system designs rely on fast switching display panels and photonics devices, including adaptive focus microlens array and switchable slit array. Polymer-stabilized blue phase liquid crystal (PS-BPLC) material provides a possible solution to meet the aforementioned fast response time requirement. However, present display and photonic devices based on blue …


Holographic Recording And Applications Of Multiplexed Volume Bragg Gratings In Photo-Thermo-Refractive Glass, Daniel Ott Jan 2014

Holographic Recording And Applications Of Multiplexed Volume Bragg Gratings In Photo-Thermo-Refractive Glass, Daniel Ott

Electronic Theses and Dissertations

Recent developments in holographic recording of volume Bragg gratings (VBGs) in photo-thermo-refractive (PTR) glass have demonstrated their utility as components in high power laser systems for spectral narrowing, transverse mode control, beam combining, and pulse stretching/compression. VBG structures are capable of diffracting incident light into a single diffraction order with high efficiency given the Bragg condition is met. The Bragg condition depends on both the wavelength and angle of the incident light making VBGs useful for filtering and manipulating both the wavelength and angular spectrum of a source. This dissertation expands upon previous research in PTR VBGs by investigating multiplexed …


Entangled Photon Pairs In Disordered Photonic Lattices, Lane Martin Jan 2014

Entangled Photon Pairs In Disordered Photonic Lattices, Lane Martin

Electronic Theses and Dissertations

Photonic lattices consisting of arrays of evanescently coupled waveguides fabricated with precisely controlled parameters have enabled the study of discrete optical phenomena, both classical and quantum, and the simulation of other physical phenomena governed by the same dynamics. In this dissertation, I have experimentally demonstrated transverse Anderson localization of classical light in arrays with off-diagonal coupling disorder and investigated theoretically and experimentally the propagation of entangled photon pairs through such disordered systems. I discovered a new phenomenon, Anderson co-localization, in which a spatially entangled photon pair in a correlated transversally extended state localizes in the correlation space, though neither photon …


Injection-Locked Vertical Cavity Surface Emitting Lasers (Vcsels) For Optical Arbitrary Waveform Generation, Sharad Bhooplapur Jan 2014

Injection-Locked Vertical Cavity Surface Emitting Lasers (Vcsels) For Optical Arbitrary Waveform Generation, Sharad Bhooplapur

Electronic Theses and Dissertations

Complex optical pulse shapes are typically generated from ultrashort laser pulses by manipulating the optical spectrum of the input pulses. This generates complex but periodic time-domain waveforms. Optical Arbitrary Waveform Generation (OAWG) builds on the techniques of ultrashort pulse-shaping, with the goal of making non-periodic, truly arbitrary optical waveforms. Some applications of OAWG are coherently controlling chemical reactions on a femtosecond time scale, improving the performance of LADAR systems, high-capacity optical telecommunications and ultra wideband signals processing. In this work, an array of Vertical Cavity Surface Emitting Lasers (VCSELs) are used as modulators, by injection-locking each VCSEL to an individual …


Nonlinear Integrated Photonics On Silicon And Gallium Arsenide Substrates, Jichi Ma Jan 2014

Nonlinear Integrated Photonics On Silicon And Gallium Arsenide Substrates, Jichi Ma

Electronic Theses and Dissertations

Silicon photonics is nowadays a mature technology and is on the verge of becoming a blossoming industry. Silicon photonics has also been pursued as a platform for integrated nonlinear optics based on Raman and Kerr effects. In recent years, more futuristic directions have been pursued by various groups. For instance, the realm of silicon photonics has been expanded beyond the well-established near-infrared wavelengths and into the mid-infrared (3 - 5 µm). In this wavelength range, the omnipresent hurdle of nonlinear silicon photonics in the telecommunication band, i.e., nonlinear losses due to two-photon absorption, is inherently nonexistent. With the lack of …


Photonic Filtering For Applications In Microwave Generation And Metrology, Marcus Bagnell Jan 2014

Photonic Filtering For Applications In Microwave Generation And Metrology, Marcus Bagnell

Electronic Theses and Dissertations

This work uses the photonic filtering properties of Fabry-Perot etalons to show improvements in the electrical signals created upon photodetection of the optical signal. First, a method of delay measurement is described which uses multi-heterodyne detection to find correlations in white light signals at 20 km of delay to sub millimeter resolution. By filtering incoming white light with a Fabry-Perot etalon, the pseudo periodic signal is suitable for measurement by combining and photodetecting it with an optical frequency comb. In this way, optical data from a large bandwidth can be downconverted and sampled on low frequency electronics. Second, a high …


Multifunctional, Multimaterial Particle Fabrication Via An In-Fiber Fluid Instability, Joshua Kaufman Jan 2014

Multifunctional, Multimaterial Particle Fabrication Via An In-Fiber Fluid Instability, Joshua Kaufman

Electronic Theses and Dissertations

Spherical micro- and nano-particles have found widespread use in many various applications from paint to cosmetics to medicine. Due to the multiplicity of desired particle material(s), structure, size range, and functionality, many approaches exist for generating such particles. Bottom-up methods such as chemical synthesis have a high yield and work with a wide range of materials; however, these processes typically lead to large polydispersity and cannot produce structured particles. Top-down approaches such as microfluidics overcome the polydispersity issue and may produce a few different structures in particles, but at lower rates and only at the micro-scale. A method that can …


Large Area Conformal Infrared Frequency Selective Surfaces, Jeffrey D'Archangel Jan 2014

Large Area Conformal Infrared Frequency Selective Surfaces, Jeffrey D'Archangel

Electronic Theses and Dissertations

Frequency selective surfaces (FSS) were originally developed for electromagnetic filtering applications at microwave frequencies. Electron-beam lithography has enabled the extension of FSS to infrared frequencies; however, these techniques create sample sizes that are seldom appropriate for real world applications due to the size and rigidity of the substrate. A new method of fabricating large area conformal infrared FSS is introduced, which involves releasing miniature FSS arrays from a substrate for implementation in a coating. A selective etching process is proposed and executed to create FSS particles from crossed-dipole and square-loop FSS arrays. When the fill-factor of the particles in the …


Broad Bandwidth, All-Fiber, Thulium-Doped Photonic Crystal Fiber Amplifier For Potential Use In Scaling Ultrashort Pulse Peak Powers, Alex Sincore Jan 2014

Broad Bandwidth, All-Fiber, Thulium-Doped Photonic Crystal Fiber Amplifier For Potential Use In Scaling Ultrashort Pulse Peak Powers, Alex Sincore

Electronic Theses and Dissertations

Fiber based ultrashort pulse laser sources are desirable for many applications; however generating high peak powers in fiber lasers is primarily limited by the onset of nonlinear effects such as self-phase modulation, stimulated Raman scattering, and self-focusing. Increasing the fiber core diameter mitigates the onset of these nonlinear effects, but also allows unwanted higher-order transverse spatial modes to propagate. Both large core diameters and single-mode propagation can be simultaneously attained using photonic crystal fibers. Thulium-doped fiber lasers are attractive for high peak power ultrashort pulse systems. They offer a broad gain bandwidth, capable of amplifying sub-100 femtosecond pulses. The longer …


Laser Filamentation - Beyond Self-Focusing And Plasma Defocusing, Khan Lim Jan 2014

Laser Filamentation - Beyond Self-Focusing And Plasma Defocusing, Khan Lim

Electronic Theses and Dissertations

Laser filamentation is a highly complex and dynamic nonlinear process that is sensitive to many physical parameters. The basic properties that define a filament consist of (i) a narrow, high intensity core that persists for distances much greater than the Rayleigh distance, (ii) a low density plasma channel existing within the filament core, and (iii) a supercontinuum generated over the course of filamentation. However, there remain many questions pertaining to how these basic properties are affected by changes in the conditions in which the filaments are formed; that is the premise of the work presented in this dissertation. To examine …


Multimaterial Fibers In Photonics And Nanotechnology, Guangming Tao Jan 2014

Multimaterial Fibers In Photonics And Nanotechnology, Guangming Tao

Electronic Theses and Dissertations

Recent progress in combing multiple materials with distinct optical, electronic, and thermomechanical properties monolithically in a kilometer-long fiber drawn from a preform offers unique multifunctionality at a low cost. A wide range of unique in-fiber devices have been developed in fiber form-factor using this strategy. Here, I summary my recent results in this nascent field of 'multimaterial fibers'. I will focus on my achievements in producing robust infrared optical fibers and in appropriating optical fiber production technology for applications in nanofabrication. The development of optical components suitable for the infrared (IR) is crucial for applications in this spectral range to …


Comparison Of Computer-Based And Optical Face Recognition Paradigms, Abdulaziz A. Alorf Jan 2014

Comparison Of Computer-Based And Optical Face Recognition Paradigms, Abdulaziz A. Alorf

Dissertations, Master's Theses and Master's Reports - Open

The main objectives of this thesis are to validate an improved principal components analysis (IPCA) algorithm on images; designing and simulating a digital model for image compression, face recognition and image detection by using a principal components analysis (PCA) algorithm and the IPCA algorithm; designing and simulating an optical model for face recognition and object detection by using the joint transform correlator (JTC); establishing detection and recognition thresholds for each model; comparing between the performance of the PCA algorithm and the performance of the IPCA algorithm in compression, recognition and, detection; and comparing between the performance of the digital model …


Integration Of Instrumentation And Processing Software Of A Laser Speckle Contrast Imaging System, Jacob James Carrick Jan 2014

Integration Of Instrumentation And Processing Software Of A Laser Speckle Contrast Imaging System, Jacob James Carrick

Dissertations, Master's Theses and Master's Reports - Open

Laser speckle contrast imaging (LSCI) has the potential to be a powerful tool in medicine, but more research in the field is required so it can be used properly. To help in the progression of Michigan Tech's research in the field, a graphical user interface (GUI) was designed in Matlab to control the instrumentation of the experiments as well as process the raw speckle images into contrast images while they are being acquired. The design of the system was successful and is currently being used by Michigan Tech's Biomedical Engineering department. This thesis describes the development of the LSCI GUI …


Characterization Of The Atmospheric Effects On The Transmission Of Thermal Radiation, Mohamed E. Hanafy Jan 2014

Characterization Of The Atmospheric Effects On The Transmission Of Thermal Radiation, Mohamed E. Hanafy

Dissertations, Master's Theses and Master's Reports - Open

Atmospheric scattering plays a crucial rule in degrading the performance of electro optical imaging systems operating in the visible and infra-red spectral bands, and hence limits the quality of the acquired images, either through reduction of contrast or increase of image blur. The exact nature of light scattering by atmospheric media is highly complex and depends on the types, orientations, sizes and distributions of particles constituting these media, as well as wavelengths, polarization states and directions of the propagating radiation. Here we follow the common approach for solving imaging and propagation problems by treating the propagating light through atmospheric media …