Open Access. Powered by Scholars. Published by Universities.®

Microarrays Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Microarrays

Statistical Approaches Of Gene Set Analysis With Quantitative Trait Loci For High-Throughput Genomic Studies., Samarendra Das Dec 2020

Statistical Approaches Of Gene Set Analysis With Quantitative Trait Loci For High-Throughput Genomic Studies., Samarendra Das

Electronic Theses and Dissertations

Recently, gene set analysis has become the first choice for gaining insights into the underlying complex biology of diseases through high-throughput genomic studies, such as Microarrays, bulk RNA-Sequencing, single cell RNA-Sequencing, etc. It also reduces the complexity of statistical analysis and enhances the explanatory power of the obtained results. Further, the statistical structure and steps common to these approaches have not yet been comprehensively discussed, which limits their utility. Hence, a comprehensive overview of the available gene set analysis approaches used for different high-throughput genomic studies is provided. The analysis of gene sets is usually carried out based on …


Identification Of Yeast Transcriptional Regulation Networks Using Multivariate Random Forests, Yuanyuan Xiao, Mark Segal Dec 2008

Identification Of Yeast Transcriptional Regulation Networks Using Multivariate Random Forests, Yuanyuan Xiao, Mark Segal

Mark R Segal

The recent availability of whole-genome scale data sets that investigate complementary and diverse aspects of transcriptional regulation has spawned an increased need for new and effective computational approaches to analyze and integrate these large scale assays. Here, we propose a novel algorithm, based on random forest methodology, to relate gene expression (as derived from expression microarrays) to sequence features residing in gene promoters (as derived from DNA motif data) and transcription factor binding to gene promoters (as derived from tiling microarrays). We extend the random forest approach to model a multivariate response as represented, for example, by time-course gene expression …


A Robust Measure Of Correlation Between Two Genes On A Microarray, Johanna S. Hardin, Aya Mitani '06, Leanne Hicks, Brian Vankoten Jan 2007

A Robust Measure Of Correlation Between Two Genes On A Microarray, Johanna S. Hardin, Aya Mitani '06, Leanne Hicks, Brian Vankoten

Pomona Faculty Publications and Research

Background

The underlying goal of microarray experiments is to identify gene expression patterns across different experimental conditions. Genes that are contained in a particular pathway or that respond similarly to experimental conditions could be co-expressed and show similar patterns of expression on a microarray. Using any of a variety of clustering methods or gene network analyses we can partition genes of interest into groups, clusters, or modules based on measures of similarity. Typically, Pearson correlation is used to measure distance (or similarity) before implementing a clustering algorithm. Pearson correlation is quite susceptible to outliers, however, an unfortunate characteristic when dealing …


Differential Expression With The Bioconductor Project, Anja Von Heydebreck, Wolfgang Huber, Robert Gentleman Jun 2004

Differential Expression With The Bioconductor Project, Anja Von Heydebreck, Wolfgang Huber, Robert Gentleman

Bioconductor Project Working Papers

A basic, yet challenging task in the analysis of microarray gene expression data is the identification of changes in gene expression that are associated with particular biological conditions. We discuss different approaches to this task and illustrate how they can be applied using software from the Bioconductor Project. A central problem is the high dimensionality of gene expression space, which prohibits a comprehensive statistical analysis without focusing on particular aspects of the joint distribution of the genes expression levels. Possible strategies are to do univariate gene-by-gene analysis, and to perform data-driven nonspecific filtering of genes before the actual statistical analysis. …


Error Models For Microarray Intensities, Wolfgang Huber, Anja Von Heydebreck, Martin Vingron Mar 2004

Error Models For Microarray Intensities, Wolfgang Huber, Anja Von Heydebreck, Martin Vingron

Bioconductor Project Working Papers

We derive the additive-multiplicative error model for microarray intensities, and describe two applications. For the detection of differentially expressed genes, we obtain a statistic whose variance is approximately independent of the mean intensity. For the post hoc calibration (normalization) of data with respect to experimental factors, we describe a method for parameter estimation.