Open Access. Powered by Scholars. Published by Universities.®

Microarrays Commons

Open Access. Powered by Scholars. Published by Universities.®

Genomics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 20 of 20

Full-Text Articles in Microarrays

Statistical Approaches Of Gene Set Analysis With Quantitative Trait Loci For High-Throughput Genomic Studies., Samarendra Das Dec 2020

Statistical Approaches Of Gene Set Analysis With Quantitative Trait Loci For High-Throughput Genomic Studies., Samarendra Das

Electronic Theses and Dissertations

Recently, gene set analysis has become the first choice for gaining insights into the underlying complex biology of diseases through high-throughput genomic studies, such as Microarrays, bulk RNA-Sequencing, single cell RNA-Sequencing, etc. It also reduces the complexity of statistical analysis and enhances the explanatory power of the obtained results. Further, the statistical structure and steps common to these approaches have not yet been comprehensively discussed, which limits their utility. Hence, a comprehensive overview of the available gene set analysis approaches used for different high-throughput genomic studies is provided. The analysis of gene sets is usually carried out based on …


Unified Methods For Feature Selection In Large-Scale Genomic Studies With Censored Survival Outcomes, Lauren Spirko-Burns, Karthik Devarajan Mar 2019

Unified Methods For Feature Selection In Large-Scale Genomic Studies With Censored Survival Outcomes, Lauren Spirko-Burns, Karthik Devarajan

COBRA Preprint Series

One of the major goals in large-scale genomic studies is to identify genes with a prognostic impact on time-to-event outcomes which provide insight into the disease's process. With rapid developments in high-throughput genomic technologies in the past two decades, the scientific community is able to monitor the expression levels of tens of thousands of genes and proteins resulting in enormous data sets where the number of genomic features is far greater than the number of subjects. Methods based on univariate Cox regression are often used to select genomic features related to survival outcome; however, the Cox model assumes proportional hazards …


Non-Invasive Analysis Of The Sputum Transcriptome Discriminates Clinical Phenotypes Of Asthma, Xiting Yan Jan 2019

Non-Invasive Analysis Of The Sputum Transcriptome Discriminates Clinical Phenotypes Of Asthma, Xiting Yan

Yale Day of Data

Whole transcriptome wide gene expression profiles in the sputum and circulation from 100 asthma patients were measured using the Affymetrix HuGene 1.0ST arrays. Unsupervised clustering analysis based on pathways from KEGG were used to identify TEA clusters of patients from the sputum gene expression profiles. The identified TEA clusters have significantly different pre-bronchodilator FEV1, bronchodilator responsiveness, exhaled nitric oxide levels, history of hospitalization for asthma and history of intubation. Evaluation of TEA clusters in children from Asthma BRIDGE cohort confirmed the identified differences in intubation and hospitalization. Furthermore, evaluation of the TH2 gene signatures suggested a much lower prevalence of …


A Novel Pathway-Based Distance Score Enhances Assessment Of Disease Heterogeneity In Gene Expression, Yunqing Liu, Xiting Yan Jan 2019

A Novel Pathway-Based Distance Score Enhances Assessment Of Disease Heterogeneity In Gene Expression, Yunqing Liu, Xiting Yan

Yale Day of Data

Distance-based unsupervised clustering of gene expression data is commonly used to identify heterogeneity in biologic samples. However, high noise levels in gene expression data and the relatively high correlation between genes are often encountered, so traditional distances such as Euclidean distance may not be effective at discriminating the biological differences between samples. In this study, we developed a novel computational method to assess the biological differences based on pathways by assuming that ontologically defined biological pathways in biologically similar samples have similar behavior. Application of this distance score results in more accurate, robust, and biologically meaningful clustering results in both …


Power In Pairs: Assessing The Statistical Value Of Paired Samples In Tests For Differential Expression, John R. Stevens, Jennifer S. Herrick, Roger K. Wolff, Martha L. Slattery Dec 2018

Power In Pairs: Assessing The Statistical Value Of Paired Samples In Tests For Differential Expression, John R. Stevens, Jennifer S. Herrick, Roger K. Wolff, Martha L. Slattery

Mathematics and Statistics Faculty Publications

Background: When genomics researchers design a high-throughput study to test for differential expression, some biological systems and research questions provide opportunities to use paired samples from subjects, and researchers can plan for a certain proportion of subjects to have paired samples. We consider the effect of this paired samples proportion on the statistical power of the study, using characteristics of both count (RNA-Seq) and continuous (microarray) expression data from a colorectal cancer study.

Results: We demonstrate that a higher proportion of subjects with paired samples yields higher statistical power, for various total numbers of samples, and for various strengths of …


Computational Modelling Of Human Transcriptional Regulation By An Information Theory-Based Approach, Ruipeng Lu Apr 2018

Computational Modelling Of Human Transcriptional Regulation By An Information Theory-Based Approach, Ruipeng Lu

Electronic Thesis and Dissertation Repository

ChIP-seq experiments can identify the genome-wide binding site motifs of a transcription factor (TF) and determine its sequence specificity. Multiple algorithms were developed to derive TF binding site (TFBS) motifs from ChIP-seq data, including the entropy minimization-based Bipad that can derive both contiguous and bipartite motifs. Prior studies applying these algorithms to ChIP-seq data only analyzed a small number of top peaks with the highest signal strengths, biasing their resultant position weight matrices (PWMs) towards consensus-like, strong binding sites; nor did they derive bipartite motifs, disabling the accurate modelling of binding behavior of dimeric TFs.

This thesis presents a novel …


Models For Hsv Shedding Must Account For Two Levels Of Overdispersion, Amalia Magaret Jan 2016

Models For Hsv Shedding Must Account For Two Levels Of Overdispersion, Amalia Magaret

UW Biostatistics Working Paper Series

We have frequently implemented crossover studies to evaluate new therapeutic interventions for genital herpes simplex virus infection. The outcome measured to assess the efficacy of interventions on herpes disease severity is the viral shedding rate, defined as the frequency of detection of HSV on the genital skin and mucosa. We performed a simulation study to ascertain whether our standard model, which we have used previously, was appropriately considering all the necessary features of the shedding data to provide correct inference. We simulated shedding data under our standard, validated assumptions and assessed the ability of 5 different models to reproduce the …


Methods For Integrative Analysis Of Genomic Data, Paul Manser Jan 2014

Methods For Integrative Analysis Of Genomic Data, Paul Manser

Theses and Dissertations

In recent years, the development of new genomic technologies has allowed for the investigation of many regulatory epigenetic marks besides expression levels, on a genome-wide scale. As the price for these technologies continues to decrease, study sizes will not only increase, but several different assays are beginning to be used for the same samples. It is therefore desirable to develop statistical methods to integrate multiple data types that can handle the increased computational burden of incorporating large data sets. Furthermore, it is important to develop sound quality control and normalization methods as technical errors can compound when integrating multiple genomic …


Global Quantitative Assessment Of The Colorectal Polyp Burden In Familial Adenomatous Polyposis Using A Web-Based Tool, Patrick M. Lynch, Jeffrey S. Morris, William A. Ross, Miguel A. Rodriguez-Bigas, Juan Posadas, Rossa Khalaf, Diane M. Weber, Valerie O. Sepeda, Bernard Levin, Imad Shureiqi Jan 2013

Global Quantitative Assessment Of The Colorectal Polyp Burden In Familial Adenomatous Polyposis Using A Web-Based Tool, Patrick M. Lynch, Jeffrey S. Morris, William A. Ross, Miguel A. Rodriguez-Bigas, Juan Posadas, Rossa Khalaf, Diane M. Weber, Valerie O. Sepeda, Bernard Levin, Imad Shureiqi

Jeffrey S. Morris

Background: Accurate measures of the total polyp burden in familial adenomatous polyposis (FAP) are lacking. Current assessment tools include polyp quantitation in limited-field photographs and qualitative total colorectal polyp burden by video.

Objective: To develop global quantitative tools of the FAP colorectal adenoma burden.

Design: A single-arm, phase II trial.

Patients: Twenty-seven patients with FAP.

Intervention: Treatment with celecoxib for 6 months, with before-treatment and after-treatment videos posted to an intranet with an interactive site for scoring.

Main Outcome Measurements: Global adenoma counts and sizes (grouped into categories: less than 2 mm, 2-4 mm, and greater than 4 mm) were …


Bayesian Methods For Expression-Based Integration, Elizabeth M. Jennings, Jeffrey S. Morris, Raymond J. Carroll, Ganiraju C. Manyam, Veera Baladandayuthapani Dec 2012

Bayesian Methods For Expression-Based Integration, Elizabeth M. Jennings, Jeffrey S. Morris, Raymond J. Carroll, Ganiraju C. Manyam, Veera Baladandayuthapani

Jeffrey S. Morris

We propose methods to integrate data across several genomic platforms using a hierarchical Bayesian analysis framework that incorporates the biological relationships among the platforms to identify genes whose expression is related to clinical outcomes in cancer. This integrated approach combines information across all platforms, leading to increased statistical power in finding these predictive genes, and further provides mechanistic information about the manner in which the gene affects the outcome. We demonstrate the advantages of the shrinkage estimation used by this approach through a simulation, and finally, we apply our method to a Glioblastoma Multiforme dataset and identify several genes potentially …


Statistical Methods For Proteomic Biomarker Discovery Based On Feature Extraction Or Functional Modeling Approaches, Jeffrey S. Morris Jan 2012

Statistical Methods For Proteomic Biomarker Discovery Based On Feature Extraction Or Functional Modeling Approaches, Jeffrey S. Morris

Jeffrey S. Morris

In recent years, developments in molecular biotechnology have led to the increased promise of detecting and validating biomarkers, or molecular markers that relate to various biological or medical outcomes. Proteomics, the direct study of proteins in biological samples, plays an important role in the biomarker discovery process. These technologies produce complex, high dimensional functional and image data that present many analytical challenges that must be addressed properly for effective comparative proteomics studies that can yield potential biomarkers. Specific challenges include experimental design, preprocessing, feature extraction, and statistical analysis accounting for the inherent multiple testing issues. This paper reviews various computational …


Integrative Bayesian Analysis Of High-Dimensional Multi-Platform Genomics Data, Wenting Wang, Veerabhadran Baladandayuthapani, Jeffrey S. Morris, Bradley M. Broom, Ganiraju C. Manyam, Kim-Anh Do Jan 2012

Integrative Bayesian Analysis Of High-Dimensional Multi-Platform Genomics Data, Wenting Wang, Veerabhadran Baladandayuthapani, Jeffrey S. Morris, Bradley M. Broom, Ganiraju C. Manyam, Kim-Anh Do

Jeffrey S. Morris

Motivation: Analyzing data from multi-platform genomics experiments combined with patients’ clinical outcomes helps us understand the complex biological processes that characterize a disease, as well as how these processes relate to the development of the disease. Current integration approaches that treat the data are limited in that they do not consider the fundamental biological relationships that exist among the data from platforms.

Statistical Model: We propose an integrative Bayesian analysis of genomics data (iBAG) framework for identifying important genes/biomarkers that are associated with clinical outcome. This framework uses a hierarchical modeling technique to combine the data obtained from multiple platforms …


Clustering With Exclusion Zones: Genomic Applications, Mark Segal, Yuanyuan Xiao, Fred Huffer Dec 2010

Clustering With Exclusion Zones: Genomic Applications, Mark Segal, Yuanyuan Xiao, Fred Huffer

Mark R Segal

Methods for formally evaluating the clustering of events in space or time, notably the scan statistic, have been richly developed and widely applied. In order to utilize the scan statistic and related approaches, it is necessary to know the extent of the spatial or temporal domains wherein the events arise. Implicit in their usage is that these domains have no “holes”—hereafter “exclusion zones”—regions in which events a priori cannot occur. However, in many contexts, this requirement is not met. When the exclusion zones are known, it is straightforward to correct the scan statistic for their occurrence by simply adjusting the …


Wavelet-Based Functional Linear Mixed Models: An Application To Measurement Error–Corrected Distributed Lag Models, Elizabeth J. Malloy, Jeffrey S. Morris, Sara D. Adar, Helen Suh, Diane R. Gold, Brent A. Coull Jan 2010

Wavelet-Based Functional Linear Mixed Models: An Application To Measurement Error–Corrected Distributed Lag Models, Elizabeth J. Malloy, Jeffrey S. Morris, Sara D. Adar, Helen Suh, Diane R. Gold, Brent A. Coull

Jeffrey S. Morris

Frequently, exposure data are measured over time on a grid of discrete values that collectively define a functional observation. In many applications, researchers are interested in using these measurements as covariates to predict a scalar response in a regression setting, with interest focusing on the most biologically relevant time window of exposure. One example is in panel studies of the health effects of particulate matter (PM), where particle levels are measured over time. In such studies, there are many more values of the functional data than observations in the data set so that regularization of the corresponding functional regression coefficient …


Members’ Discoveries: Fatal Flaws In Cancer Research, Jeffrey S. Morris Jan 2010

Members’ Discoveries: Fatal Flaws In Cancer Research, Jeffrey S. Morris

Jeffrey S. Morris

A recent article published in The Annals of Applied Statistics (AOAS) by two MD Anderson researchers—Keith Baggerly and Kevin Coombes—dissects results from a highly-influential series of medical papers involving genomics-driven personalized cancer therapy, and outlines a series of simple yet fatal flaws that raises serious questions about the veracity of the original results. Having immediate and strong impact, this paper, along with related work, is providing the impetus for new standards of reproducibility in scientific research.


Statistical Contributions To Proteomic Research, Jeffrey S. Morris, Keith A. Baggerly, Howard B. Gutstein, Kevin R. Coombes Jan 2010

Statistical Contributions To Proteomic Research, Jeffrey S. Morris, Keith A. Baggerly, Howard B. Gutstein, Kevin R. Coombes

Jeffrey S. Morris

Proteomic profiling has the potential to impact the diagnosis, prognosis, and treatment of various diseases. A number of different proteomic technologies are available that allow us to look at many proteins at once, and all of them yield complex data that raise significant quantitative challenges. Inadequate attention to these quantitative issues can prevent these studies from achieving their desired goals, and can even lead to invalid results. In this chapter, we describe various ways the involvement of statisticians or other quantitative scientists in the study team can contribute to the success of proteomic research, and we outline some of the …


Informatics And Statistics For Analyzing 2-D Gel Electrophoresis Images, Andrew W. Dowsey, Jeffrey S. Morris, Howard G. Gutstein, Guang Z. Yang Jan 2010

Informatics And Statistics For Analyzing 2-D Gel Electrophoresis Images, Andrew W. Dowsey, Jeffrey S. Morris, Howard G. Gutstein, Guang Z. Yang

Jeffrey S. Morris

Whilst recent progress in ‘shotgun’ peptide separation by integrated liquid chromatography and mass spectrometry (LC/MS) has enabled its use as a sensitive analytical technique, proteome coverage and reproducibility is still limited and obtaining enough replicate runs for biomarker discovery is a challenge. For these reasons, recent research demonstrates the continuing need for protein separation by two-dimensional gel electrophoresis (2-DE). However, with traditional 2-DE informatics, the digitized images are reduced to symbolic data though spot detection and quantification before proteins are compared for differential expression by spot matching. Recently, a more robust and automated paradigm has emerged where gels are directly …


Bayesian Random Segmentationmodels To Identify Shared Copy Number Aberrations For Array Cgh Data, Veerabhadran Baladandayuthapani, Yuan Ji, Rajesh Talluri, Luis E. Nieto-Barajas, Jeffrey S. Morris Jan 2010

Bayesian Random Segmentationmodels To Identify Shared Copy Number Aberrations For Array Cgh Data, Veerabhadran Baladandayuthapani, Yuan Ji, Rajesh Talluri, Luis E. Nieto-Barajas, Jeffrey S. Morris

Jeffrey S. Morris

Array-based comparative genomic hybridization (aCGH) is a high-resolution high-throughput technique for studying the genetic basis of cancer. The resulting data consists of log fluorescence ratios as a function of the genomic DNA location and provides a cytogenetic representation of the relative DNA copy number variation. Analysis of such data typically involves estimation of the underlying copy number state at each location and segmenting regions of DNA with similar copy number states. Most current methods proceed by modeling a single sample/array at a time, and thus fail to borrow strength across multiple samples to infer shared regions of copy number aberrations. …


Identification Of Yeast Transcriptional Regulation Networks Using Multivariate Random Forests, Yuanyuan Xiao, Mark Segal Dec 2008

Identification Of Yeast Transcriptional Regulation Networks Using Multivariate Random Forests, Yuanyuan Xiao, Mark Segal

Mark R Segal

The recent availability of whole-genome scale data sets that investigate complementary and diverse aspects of transcriptional regulation has spawned an increased need for new and effective computational approaches to analyze and integrate these large scale assays. Here, we propose a novel algorithm, based on random forest methodology, to relate gene expression (as derived from expression microarrays) to sequence features residing in gene promoters (as derived from DNA motif data) and transcription factor binding to gene promoters (as derived from tiling microarrays). We extend the random forest approach to model a multivariate response as represented, for example, by time-course gene expression …


Chess, Chance And Conspiracy, Mark Segal Dec 2006

Chess, Chance And Conspiracy, Mark Segal

Mark R Segal

Chess and chance are seemingly strange bedfellows. Luck and/or randomness have no apparent role in move selection when the game is played at the highest levels. However, when competition is at the ultimate level, that of the World Chess Championship (WCC), chess and conspiracy are not strange bedfellows, there being a long and colorful history of accusations levied between participants. One such accusation, frequently repeated, was that all the games in the 1985 WCC (Karpov vs Kasparov) were fixed and prearranged move by move. That this claim was advanced by a former World Champion, Bobby Fischer, argues that it ought …