Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Statistical, Nonlinear, and Soft Matter Physics

Study Of Static And Dynamical Properties Of Complex Antiferroelectrics Materials, Kinnary Yogeshbhai Patel May 2021

Study Of Static And Dynamical Properties Of Complex Antiferroelectrics Materials, Kinnary Yogeshbhai Patel

Graduate Theses and Dissertations

The aim of this dissertation is the investigation of the static and dynamical properties of the complex antiferroelectric materials using Effective Hamiltonian method and First principles calculations. In chapter 3, a novel elemental interatomic coupling in perovskite materials which bilinearly couples the antiferroelectric displacements of cations with the rotations of the oxygen octahedra. This new coupling explains a very complex crystal structure of prototypical antiferroelectric PbZrO3. My explanation provides a unified description of many other complex antipolar crystal structures in variety of perovskite materials, including the occurrence of incommensurate phases in some of them. In chapter 4, results and analysis …


Reversible Motion In A Contact Line, Audrey Profeta, Esmeralda Orozco, Juan A. Ortiz Salazar, Dani Medina, Nathan C. Keim Sep 2018

Reversible Motion In A Contact Line, Audrey Profeta, Esmeralda Orozco, Juan A. Ortiz Salazar, Dani Medina, Nathan C. Keim

STAR Program Research Presentations

When a body of liquid sits on a surface, an irregular border between the wet and dry regions of the surface exists, called the contact line. Driving this contact line back and forth repeatedly can change its shape.We use a syringe pump to cyclically infuse and withdraw a predetermined volume of water, and take photos of the contact line after each cycle. Comparing these images to each other determines if the contact line is returning to the same shape. We find that below a critical value of infused volume, after many cycles the contact line reaches a steady state in …


Phase Transitions In Smectic Liquid Crystal Systems, John Van Atta, Josh Ziegler Oct 2014

Phase Transitions In Smectic Liquid Crystal Systems, John Van Atta, Josh Ziegler

Physics

Liquid crystal systems show strong responses to small changes in both temperature and electric field. Changing these conditions can result in phase shifts and other similar behaviors. We study several theoretical models of smectic liquid crystals. The ideas and notation are first developed in basic polynomial models used to describe liquid crystal systems dependent only on temperature. Specifically, smectic-C to smectic-A phase transitions are examined in a fourth-order polynomial model. The bifurcations in the nonlinear equations are shown to correspond to the phase transi- tions in the system. Similar analytic techniques are then applied to a more complex model, based …