Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 47

Full-Text Articles in Statistical, Nonlinear, and Soft Matter Physics

Integration Of The Ashby Technique And Pahl-Beitz Quantitative Ranking For Railway Axle Material Selection, Helya Chafshoh Nafisah, Jaka Fajar Fatriansyah, Siti Norasmah Surip May 2024

Integration Of The Ashby Technique And Pahl-Beitz Quantitative Ranking For Railway Axle Material Selection, Helya Chafshoh Nafisah, Jaka Fajar Fatriansyah, Siti Norasmah Surip

Journal of Materials Exploration and Findings

Railway axle serves as a vital connection between the train's wheels and its body. However, cyclic loading and high speed can induce fatigue in railway axle, which potentially leads to damage human safety. Therefore, it is important to find materials that have good mechanical properties with the lowest weight and cost. In this paper, a comprehensive method using Ashby chart has been performed to select candidate materials of railway axle. The methods begin with analyzing function by determining the problem, objective function, and constraints. After that, the results obtained are ranked using Pahl and Beitz quantitative weighting method. The results …


Analysis Of The Effect Of Different Surface Preparation Methods On Corrosion Resistance And Adhesion Strength Of Astm A36 Steel Substrate With Surface Tolerant Epoxy Paint As Coating Material, Irwan Wijaya Santoso, Daffa Aqila, Rini Riastuti, Rizal Tresna Ramadhani May 2024

Analysis Of The Effect Of Different Surface Preparation Methods On Corrosion Resistance And Adhesion Strength Of Astm A36 Steel Substrate With Surface Tolerant Epoxy Paint As Coating Material, Irwan Wijaya Santoso, Daffa Aqila, Rini Riastuti, Rizal Tresna Ramadhani

Journal of Materials Exploration and Findings

In the industrial world, to extend the service life of materials, protection methods are carried out to slow down the material's corrosion rate. The protection method that is often used is the coating method. The coating method is a protection method by coating the substrate material using a coating material to prevent contact between the substrate material and the environment. In this research, the substrate material used is ASTM A36 steel and the coating material used is Surface Tolerant Epoxy paint. The independent variable used in this study lies in the surface preparation method which consists of: solvent cleaning, hand …


Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia Dec 2023

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia

Journal of Nonprofit Innovation

Urban farming can enhance the lives of communities and help reduce food scarcity. This paper presents a conceptual prototype of an efficient urban farming community that can be scaled for a single apartment building or an entire community across all global geoeconomics regions, including densely populated cities and rural, developing towns and communities. When deployed in coordination with smart crop choices, local farm support, and efficient transportation then the result isn’t just sustainability, but also increasing fresh produce accessibility, optimizing nutritional value, eliminating the use of ‘forever chemicals’, reducing transportation costs, and fostering global environmental benefits.

Imagine Doris, who is …


Combined Risk Based Inspection And Fault Tree Analysis For Repetitive 3-Phase Line Piping Leakage At West Java Offshore Topside Facility, Dona Yuliati, Akhmad Herman Yuwono, Datu Rizal Asral, Donanta Dhaneswara Dec 2023

Combined Risk Based Inspection And Fault Tree Analysis For Repetitive 3-Phase Line Piping Leakage At West Java Offshore Topside Facility, Dona Yuliati, Akhmad Herman Yuwono, Datu Rizal Asral, Donanta Dhaneswara

Journal of Materials Exploration and Findings

Hydrocarbon releases might result in serious consequences in various aspects. In addition to the contribution to environmental pollution, repetitive leakages need high repair costs. This study aim is to minimize potential repetitive leakage for other typical 3-phase piping systems. We conducted the risk assessment by adopting Risk Based Inspection (RBI) API 581 to identify risk level, calculating piping lifetime, recommended inspection plan and mitigations. The most relevant root causes can be obtained through quantitative Fault Tree Analysis (FTA). Observation and investigation was taken from eight 3-phase piping systems that experienced repetitive leakages. It has been found that the risk level …


Nitrogen Gas Quenching Pressure Effect On Bs S155 Alloy Steel In Vacuum Furnace, Agus Mulyadi Hasanudin, Eddy Sumarno Siradj Dec 2023

Nitrogen Gas Quenching Pressure Effect On Bs S155 Alloy Steel In Vacuum Furnace, Agus Mulyadi Hasanudin, Eddy Sumarno Siradj

Journal of Materials Exploration and Findings

The production of metal and alloy products requires the use of heat treatment, when during the heat treatment process, quenching is a crucial step. The quenching medium can be anything from water, a salt bath, oil, air and gas. In a vacuum furnace, pressurized gas, most frequently nitrogen (N2) gas, serves as one of the quenching mediums. One of the drawbacks of the quenching process is the distortion and dimensional change of the parts. This paper aims to investigate the influence of nitrogen gas quenching pressure on the distortion and dimensional change of aerospace actuator gear planet parts …


Source Data For Xueyan Feng, Michael S. Dimitriyev & Edwin L. Thomas, "Soft, Malleable Double Diamond Twin", Xueyan Feng, Michael S. Dimitriyev, Edwin L. Thomas Jan 2023

Source Data For Xueyan Feng, Michael S. Dimitriyev & Edwin L. Thomas, "Soft, Malleable Double Diamond Twin", Xueyan Feng, Michael S. Dimitriyev, Edwin L. Thomas

Data and Datasets

Source data and code for Xueyan Feng, Michael S. Dimitriyev & Edwin L. Thomas, "Soft, malleable double diamond twin"


Supplementary Code For "Chain Trajectories, Domain Shapes And Terminal Boundaries In Block Copolymers", Benjamin R. Greenvall, Michael S. Dimitriyev, Gregory M. Grason Jan 2023

Supplementary Code For "Chain Trajectories, Domain Shapes And Terminal Boundaries In Block Copolymers", Benjamin R. Greenvall, Michael S. Dimitriyev, Gregory M. Grason

Data and Datasets

Supplementary code used for the publication "Chain trajectories, domain shapes and terminal boundaries in block copolymers" by Benjamin R. Greenvall, Michael S. Dimitriyev, and Gregory M. Grason. Includes code for extracting and analyzing polar order and chain trajectories from self-consistent field calculations of block copolymers.


Dynamic Rbi With Central Difference Method Approach In Calculation Of Uniform Corrosion Rate: A Casestudy On Gas Pipelines, M.Riefqi Dwi Alviansyah, Fernanda Hartoyo, Zahra Nadia Nurullia, Ari Kurniawan Dec 2022

Dynamic Rbi With Central Difference Method Approach In Calculation Of Uniform Corrosion Rate: A Casestudy On Gas Pipelines, M.Riefqi Dwi Alviansyah, Fernanda Hartoyo, Zahra Nadia Nurullia, Ari Kurniawan

Journal of Materials Exploration and Findings

The oil and gas industry generally uses a piping system to drain fluids. Even though the pipes used have been well designed, the use of pipes as a means of fluid transportation still provides the possibility of failure that can occur at any time, one of which is due to uniform corrosion. The use of standard Risk Based Inspection (RBI) according to the API RBI 581 document has been widely used to anticipate potential failures to pipe components. The use of standard RBI can reduce the risk of failure significantly. Because the standard RBI considers the component risk value to …


Experimental Evidence That Shear Bands In Metallic Glasses Nucleate Like Cracks, Alan A. Long, Wendelin Wright, Xiaojun Gu, Anna Thackray, Mayisha Nakib, Jonathan T. Uhl, Karin A. Dahmen Nov 2022

Experimental Evidence That Shear Bands In Metallic Glasses Nucleate Like Cracks, Alan A. Long, Wendelin Wright, Xiaojun Gu, Anna Thackray, Mayisha Nakib, Jonathan T. Uhl, Karin A. Dahmen

Faculty Journal Articles

Highly time-resolved mechanical measurements, modeling, and simulations show that large shear bands in bulk metallic glasses nucleate in a manner similar to cracks. When small slips reach a nucleation size, the dynamics changes and the shear band rapidly grows to span the entire sample. Smaller nucleation sizes imply lower ductility. Ductility can be increased by increasing the nucleation size relative to the maximum (“cutoff”) shear band size at the upper edge of the power law scaling range of their size distribution. This can be achieved in three ways: (1) by increasing the nucleation size beyond this cutoff size of the …


Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


How Dynamic Bond Results In The Unique Viscoelastic Behavior Of The Associating Polymers, Sirui Ge Aug 2022

How Dynamic Bond Results In The Unique Viscoelastic Behavior Of The Associating Polymers, Sirui Ge

Doctoral Dissertations

Associating polymer is a special kind of polymer possessing transient reversible bonds in addition to the conventional covalent bonds. The reversible bonds provide unique dynamics and fascinating viscoelastic properties, resulting in attractive applications for these polymers, such as self-healing and shape memory materials. Despite many years of studies, the understanding of dynamics of polymers with reversible bonds, especially on molecular level, is still in the rudimentary stage, preventing the rational design of the potential novel functional materials based on associating polymers. In this dissertation, we provide a detailed and quantitative understanding of the dynamics and viscoelastic properties of associating polymers. …


Direct Calculation Of Configurational Entropy: Pair Correlation Functions And Disorder, Clifton C. Sluss Aug 2022

Direct Calculation Of Configurational Entropy: Pair Correlation Functions And Disorder, Clifton C. Sluss

Doctoral Dissertations

Techniques such as classical molecular dynamics [MD] simulation provide ready access to the thermodynamic data of model material systems. However, the calculation of the Helmholtz and Gibbs free energies remains a difficult task due to the tedious nature of extracting accurate values of the excess entropy from MD simulation data. Thermodynamic integration, a common technique for the calculation of entropy requires numerous simulations across a range of temperatures. Alternative approaches to the direct calculation of entropy based on functionals of pair correlation functions [PCF] have been developed over the years. This work builds upon the functional approach tradition by extending …


Voltage-Controlled Magnetic Anisotropy In Antiferromagnetic Mgo-Capped Mnpt Films, P. H. Chang, Wuzhang Fang, T. Ozaki, Kirill Belashchenko May 2021

Voltage-Controlled Magnetic Anisotropy In Antiferromagnetic Mgo-Capped Mnpt Films, P. H. Chang, Wuzhang Fang, T. Ozaki, Kirill Belashchenko

Kirill Belashchenko Publications

The magnetic anisotropy in MgO-capped MnPt films and its voltage control are studied using first-principles calculations. Sharp variation of the magnetic anisotropy with film thickness, especially in the Pt-terminated film, suggests that it may be widely tuned by adjusting the film thickness. In thick films the linear voltage control coefficient is as large as 1.5 and -0.6 pJ/Vm for Pt-terminated and Mn-terminated interfaces, respectively. The combination of a widely tunable magnetic anisotropy energy and a large voltage-control coefficient suggest that MgO-capped MnPt films can serve as a versatile platform for magnetic memory and antiferromagnonic applications.


Study Of Static And Dynamical Properties Of Complex Antiferroelectrics Materials, Kinnary Yogeshbhai Patel May 2021

Study Of Static And Dynamical Properties Of Complex Antiferroelectrics Materials, Kinnary Yogeshbhai Patel

Graduate Theses and Dissertations

The aim of this dissertation is the investigation of the static and dynamical properties of the complex antiferroelectric materials using Effective Hamiltonian method and First principles calculations. In chapter 3, a novel elemental interatomic coupling in perovskite materials which bilinearly couples the antiferroelectric displacements of cations with the rotations of the oxygen octahedra. This new coupling explains a very complex crystal structure of prototypical antiferroelectric PbZrO3. My explanation provides a unified description of many other complex antipolar crystal structures in variety of perovskite materials, including the occurrence of incommensurate phases in some of them. In chapter 4, results and analysis …


Design And Control Of A Peristaltic Pump To Simulate Left Atrial Pressure In A Conductive Silicone Model, Jeremy Collins May 2021

Design And Control Of A Peristaltic Pump To Simulate Left Atrial Pressure In A Conductive Silicone Model, Jeremy Collins

Mechanical Engineering Undergraduate Honors Theses

According to the CDC, atrial fibrillation is responsible for more than 454,000 hospitalizations and approximately 158,000 deaths per year. A common treatment for atrial fibrillation is catheter ablation, a process in which a long flexible tube is guided through the femoral artery and to the source of arrhythmia in the heart, where it measures the electrical potential at various locations and converts problematic heart tissue to scar tissue via ablation. This paper details the design and control of a low-cost ($400) peristaltic pump system using repetitive control to replicate blood pressure in the left atrium in a conductive silicone model …


Establishing Independent Tunability Of The Mechanical And Transport Properties Of Polymer Gels, Lucas Rankin Jan 2021

Establishing Independent Tunability Of The Mechanical And Transport Properties Of Polymer Gels, Lucas Rankin

Master’s Theses

Polymer gels can be used in the fabrication of materials for filtering liquid and gaseous media, solid-state electrolytes, and transdermal medical patches. This diverse range of applications primarily relies on the transport and mechanical properties of polymer gels. Both sets of properties have shown excellent tunability, but typically in a coupled fashion. Establishing the independent tunability of the transport and mechanical properties of polymer gels (using simple, cost-effective methods) is paramount if polymer gels are to be used to their full potential. Specifically, block copolymer gels self-assemble into organized nanoscale networks within the gel solvent, which allows for facile control …


Aps March Meeting 2021 (Online) Updates On Scientific Research During Pandemic Times, Vianney Gimenez-Pinto Jan 2021

Aps March Meeting 2021 (Online) Updates On Scientific Research During Pandemic Times, Vianney Gimenez-Pinto

Title III Professional Development Reports

While the ongoing global pandemic continues to affect our everyday lives, researchers in Science, Technology, Engineering and Math found a way to come together at the American Physical Society (APS) March Meeting 2021. The conference was online-only and had more than 11,000 registered attendants who actively participated in the program during March 14- 19, 2021.


Source Data For "End Exclusion Zones In Strongly Stretched, Molten Polymer Brushes Of Arbitrary Shape", Michael S. Dimitriyev, Gregory M. Grason Jan 2021

Source Data For "End Exclusion Zones In Strongly Stretched, Molten Polymer Brushes Of Arbitrary Shape", Michael S. Dimitriyev, Gregory M. Grason

Data and Datasets

Supplementary code for solving the constraint equations that describe curved polymer brushes. Also contains software for analyzing the resulting solutions.


Theory And Improved Methods For Probing The Cavitation To Fracture Transition, Christopher Barney Dec 2020

Theory And Improved Methods For Probing The Cavitation To Fracture Transition, Christopher Barney

Doctoral Dissertations

A material is considered soft when its bulk modulus is significantly greater than its shear modulus. Rubbery polymers are a class of soft materials where resistance to extension is mainly entropic in nature. Polymeric soft solids differ from liquids due to the presence of a percolated network of strong bonds that resist deformation and flow on a given time scale. The incompressible nature, entropically driven elasticity, and molecular scale network structure of soft polymeric solids combine to impart unique mechanical behavior that often results in complex material responses to simple loading situations. An important example of this is cavitation in …


Ultrafast Spin-Currents And Charge Conversion At 3d-5d Interfaces Probed By Time-Domain Terahertz Spectroscopy, T. H. Dang, J. Hawecker, E. Rongione, G. Baez Flores, D. Q. To, J. C. Rojas-Sanchez, H. Nong, J. Mangeney, J. Tignon, F. Godel, S. Collin, P. Seneor, M. Bibes, A. Fert, M. Anane, J. M. George, L. Vila, M. Cosset-Cheneau, D. Dolfi, R. Lebrun, P. Bortolotti, Kirill Belashchenko, S. Dhillon, H. Jaffrès Dec 2020

Ultrafast Spin-Currents And Charge Conversion At 3d-5d Interfaces Probed By Time-Domain Terahertz Spectroscopy, T. H. Dang, J. Hawecker, E. Rongione, G. Baez Flores, D. Q. To, J. C. Rojas-Sanchez, H. Nong, J. Mangeney, J. Tignon, F. Godel, S. Collin, P. Seneor, M. Bibes, A. Fert, M. Anane, J. M. George, L. Vila, M. Cosset-Cheneau, D. Dolfi, R. Lebrun, P. Bortolotti, Kirill Belashchenko, S. Dhillon, H. Jaffrès

Kirill Belashchenko Publications

Spintronic structures are extensively investigated for their spin-orbit torque properties, required for magnetic commutation functionalities. Current progress in these materials is dependent on the interface engineering for the optimization of spin transmission. Here, we advance the analysis of ultrafast spin-charge conversion phenomena at ferromagnetic-Transition metal interfaces due to their inverse spin-Hall effect properties. In particular, the intrinsic inverse spin-Hall effect of Pt-based systems and extrinsic inverse spin-Hall effect of Au:W and Au:Ta in NiFe/Au:(W,Ta) bilayers are investigated. The spin-charge conversion is probed by complementary techniques-ultrafast THz time-domain spectroscopy in the dynamic regime for THz pulse emission and ferromagnetic resonance spin-pumping …


Kinetic Monte Carlo Investigations Involving Atomic Layer Deposition Of Metal-Oxide Thinfilms, David Tyler Magness Dec 2020

Kinetic Monte Carlo Investigations Involving Atomic Layer Deposition Of Metal-Oxide Thinfilms, David Tyler Magness

MSU Graduate Theses

Atomic Layer Deposition is a method of manufacturing thin film materials. Metal-oxides such as zinc-oxide and aluminum-oxide are particularly interesting candidates for use in microelectronic devices such as tunnel junction barriers, transistors, Schottky diodes, and more. By adopting a 3D Kinetic Monte Carlo model capable of simulating ZnO deposition, the effect of parameters including deposition temperature, chamber pressure, and composition of the initial substrate at the beginning of deposition can be investigated. This code generates two random numbers: One is used to select a chemical reaction to occur from a list of all possible reactions and the second is used …


Proximity-Induced Magnetization In Graphene: Towards Efficient Spin Gating, Mihovil Bosnar, Ivor Lončarić, P. Lazić, Kirill Belashchenko, Igor Žutić Nov 2020

Proximity-Induced Magnetization In Graphene: Towards Efficient Spin Gating, Mihovil Bosnar, Ivor Lončarić, P. Lazić, Kirill Belashchenko, Igor Žutić

Kirill Belashchenko Publications

Gate-tunable spin-dependent properties could be induced in graphene at room temperature through the magnetic proximity effect by placing it in contact with a metallic ferromagnet. Because strong chemical bonding with the metallic substrate makes gating ineffective, an intervening passivation layer is needed. Previously considered passivation layers result in a large shift of the Dirac point away from the Fermi level, so that unrealistically large gate fields are required to tune the spin polarization in graphene (Gr). We show that a monolayer of Au or Pt used as the passivation layer between Co and graphene brings the Dirac point closer to …


Detection Of Uncompensated Magnetization At The Interface Of An Epitaxial Antiferromagnetic Insulator, Pavel N. Lapa, Min Han Lee, Igor V. Roshchin, Kirill Belashchenko, Ivan K. Schuller Nov 2020

Detection Of Uncompensated Magnetization At The Interface Of An Epitaxial Antiferromagnetic Insulator, Pavel N. Lapa, Min Han Lee, Igor V. Roshchin, Kirill Belashchenko, Ivan K. Schuller

Kirill Belashchenko Publications

We have probed directly the temperature and magnetic field dependence of pinned uncompensated magnetization at the interface of antiferromagnetic FeF2 with Cu, using FeF2-Cu-Co spin valves. Electrons polarized by the Co layer are scattered by the pinned uncompensated moments at the FeF2-Cu interface giving rise to giant magnetoresistance. We determined the direction and magnitude of the pinned uncompensated magnetization at different magnetic fields and temperatures using the angular dependencies of resistance. The strong FeF2 anisotropy pins the uncompensated magnetization along the easy axis independent of the cooling field orientation. Most interestingly, magnetic fields as …


Reinvestigation Of The Intrinsic Magnetic Properties Of (Fe1-Xcox)2b Alloys And Crystallization Behavior Of Ribbons, Tej Nath Lamichhane, Olena Palasyuk, Vladimir P. Antropov, Ivan A. Zhuravlev, Kirill Belashchenko, Ikenna C. Nlebedim, Kevin W. Dennis, Anton Jesche, Matthew J. Kramer, Sergey L. Bud'ko, R. William Mccallum, Paul C. Canfield, Valentin Taufour Nov 2020

Reinvestigation Of The Intrinsic Magnetic Properties Of (Fe1-Xcox)2b Alloys And Crystallization Behavior Of Ribbons, Tej Nath Lamichhane, Olena Palasyuk, Vladimir P. Antropov, Ivan A. Zhuravlev, Kirill Belashchenko, Ikenna C. Nlebedim, Kevin W. Dennis, Anton Jesche, Matthew J. Kramer, Sergey L. Bud'ko, R. William Mccallum, Paul C. Canfield, Valentin Taufour

Kirill Belashchenko Publications

New determination of the magnetic anisotropy from single crystals of (Fe1-xCox)2B alloys are presented. The anomalous temperature dependence of the anisotropy constant is discussed using the standard Callen-Callen theory, which is shown to be insufficient to explain the experimental results. A more material specific study using first-principles calculations with disordered moments approach gives a much more consistent interpretation of the experimental data. Since the intrinsic properties of the alloys with x=0.3-0.35 are promising for permanent magnets applications, initial investigation of the extrinsic properties are described, in particular the crystallization of melt spun ribbons with Cu, Al, …


Nano- And Micro-Structured Temperature-Sensitive Hydrogels For Rapidly Responsive Devices, Qi Lu Jul 2020

Nano- And Micro-Structured Temperature-Sensitive Hydrogels For Rapidly Responsive Devices, Qi Lu

Doctoral Dissertations

This thesis aims to extend the understanding and explore the application of temperature-responsive hydrogel systems by integrating microelectromechanical systems (MEMS). Stimuli-responsive hydrogel systems are immensely investigated and applied in numerous fields, and interfacing with micro- and nano-fabrication techniques will open up more possibilities. In Chapter 2, the first biologically relevant, in vitro cell stretching device based on hydrogel surface instability was developed. This dynamic platform is constructed by embedding micro-heater devices under temperature-responsive surface-attached hydrogels. The fast and regional temperature change actuates the stretching and relaxation of the seeded human artery smooth muscle cell (HASMC) via controllable surface creasing instability. …


Questaal: A Package Of Electronic Structure Methods Based On The Linear Muffin-Tin Orbital Technique, Dimitar Pashov, Swagata Acharya, Walter R.L. Lambrecht, Jerome Jackson, Kirill Belashchenko, Athanasios Chantis, Francois Jamet, Mark Van Schilfgaarde Apr 2020

Questaal: A Package Of Electronic Structure Methods Based On The Linear Muffin-Tin Orbital Technique, Dimitar Pashov, Swagata Acharya, Walter R.L. Lambrecht, Jerome Jackson, Kirill Belashchenko, Athanasios Chantis, Francois Jamet, Mark Van Schilfgaarde

Kirill Belashchenko Publications

This paper summarises the theory and functionality behind Questaal, an open-source suite of codes for calculating the electronic structure and related properties of materials from first principles. The formalism of the linearised muffin-tin orbital (LMTO) method is revisited in detail and developed further by the introduction of short-ranged tight-binding basis functions for full-potential calculations. The LMTO method is presented in both Green's function and wave function formulations for bulk and layered systems. The suite's full-potential LMTO code uses a sophisticated basis and augmentation method that allows an efficient and precise solution to the band problem at different levels of theory, …


Effects Of Intrinsic Defects And Alloying With Fe On The Half-Metallicity Of Co2Mnsi, G. G. Baez Flores, Ivan A. Zhuravlev, Kirill Belashchenko Feb 2020

Effects Of Intrinsic Defects And Alloying With Fe On The Half-Metallicity Of Co2Mnsi, G. G. Baez Flores, Ivan A. Zhuravlev, Kirill Belashchenko

Kirill Belashchenko Publications

The electronic structure and half-metallic gap of Co2MnSi in the presence of crystallographic defects, partial Fe substitution for Mn, and thermal spin fluctuations are studied using the coherent potential approximation and the disordered local moment method. In the presence of 5% Co or Mn vacancies the Fermi level shifts down to the minority-spin valence-band maximum. In contrast to NiMnSb, both types of Mn antisite defects in Co2MnSi are strongly exchange coupled to the host magnetization, and thermal spin fluctuations do not strongly affect the half-metallic gap. Partial substitution of Mn by Fe results in considerable changes in the Bloch spectral …


From Critical Behavior To Catastrophic Runaways: Comparing Sheared Granular Materials With Bulk Metallic Glasses, Alan A. Long, Dmitry Denisov, Peter Schall, Todd C. Hufnagel, Xiaojun Gu, Wendelin J. Wright, Karin A. Dahmen Nov 2019

From Critical Behavior To Catastrophic Runaways: Comparing Sheared Granular Materials With Bulk Metallic Glasses, Alan A. Long, Dmitry Denisov, Peter Schall, Todd C. Hufnagel, Xiaojun Gu, Wendelin J. Wright, Karin A. Dahmen

Faculty Journal Articles

The flow of granular materials and metallic glasses is governed by strongly correlated, avalanche-like deformation. Recent comparisons focused on the scaling regimes of the small avalanches, where strong similarities were found in the two systems. Here, we investigate the regime of large avalanches by computing the temporal profile or “shape” of each one, i.e., the time derivative of the stress-time series during each avalanche. We then compare the experimental statistics and dynamics of these shapes in granular media and bulk metallic glasses. We complement the experiments with a mean-field model that predicts a critical size beyond which avalanches turn into …


Force Oscillations Distort Avalanche Shapes, Louis W. Mcfaul, Wendelin J. Wright, Jordan Sickle, Karin A. Dahmen Sep 2019

Force Oscillations Distort Avalanche Shapes, Louis W. Mcfaul, Wendelin J. Wright, Jordan Sickle, Karin A. Dahmen

Faculty Journal Articles

Contradictory scaling behavior in experiments testing the principle of universality may be due to external oscillations. Thus, the effect of damped oscillatory external forces on slip avalanches in slowly deformed solids is simulated using a mean-field model. Akin to a resonance effect, oscillatory driving forces change the dynamics of avalanches with durations close to the oscillation period. This problem can be avoided by tuning mechanical resonance frequencies away from the range of the inverse avalanche durations. The results provide critical guidance for experimental tests for universality and a quantitative understanding of avalanche dynamics under a wide range of driving conditions.


Proximitized Materials, Igor Žutić, Alex Matos-Abiague, Benedikt Scharf, Hanan Dery, Kirill Belashchenko Jan 2019

Proximitized Materials, Igor Žutić, Alex Matos-Abiague, Benedikt Scharf, Hanan Dery, Kirill Belashchenko

Kirill Belashchenko Publications

Advances in scaling down heterostructures and having an improved interface quality together with atomically thin two-dimensional materials suggest a novel approach to systematically design materials. A given material can be transformed through proximity effects whereby it acquires properties of its neighbors, for example, becoming superconducting, magnetic, topologically nontrivial, or with an enhanced spin–orbit coupling. Such proximity effects not only complement the conventional methods of designing materials by doping or functionalization but also can overcome their various limitations. In proximitized materials, it is possible to realize properties that are not present in any constituent region of the considered heterostructure. While the …