Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Quantum Physics

Kapitza-Dirac Blockade: A Universal Tool For The Deterministic Preparation Of Non-Gaussian Oscillator States, Wayne Cheng-Wei Huang, Herman Batelaan, Markus Arndt Jun 2021

Kapitza-Dirac Blockade: A Universal Tool For The Deterministic Preparation Of Non-Gaussian Oscillator States, Wayne Cheng-Wei Huang, Herman Batelaan, Markus Arndt

Department of Physics and Astronomy: Faculty Publications

Harmonic oscillators count among the most fundamental quantum systems with important applications in molecular physics, nanoparticle trapping, and quantum information processing. Their equidistant energy level spacing is often a desired feature, but at the same time a challenge if the goal is to deterministically populate specific eigenstates. Here, we show how interference in the transition amplitudes in a bichromatic laser field can suppress the sequential climbing of harmonic oscillator states (Kapitza-Dirac blockade) and achieve selective excitation of energy eigenstates, cat states, and other non-Gaussian states. This technique can transform the harmonic oscillator into a coherent two-level system or be used …


Non-Gaussian Measurements Of Coherent States Of Light For Metrology And Communication, Matthew Dimario May 2021

Non-Gaussian Measurements Of Coherent States Of Light For Metrology And Communication, Matthew Dimario

Physics & Astronomy ETDs

Conventional measurement technology is unable to extract the most amount of information possible from coherent states of light. Non-Gaussian measurements which can count individual photons can surpass the sensitivity limits of ideal conventional strategies, and approach the ultimate limits achievable given by quantum mechanics. This thesis presents investigations and demonstrations of these unconventional measurements, which utilize coherent operations and single photon counting. This thesis shows that non-Gaussian measurements can outperform conventional strategies in estimation tasks as well as a variety of communication problems. This thesis also investigates novel approaches and algorithms for building robustness to static and dynamic noise which …


Applications Of Quantum Optics: From The Quantum Internet To Analogue Gravity, Anthony Brady Mar 2021

Applications Of Quantum Optics: From The Quantum Internet To Analogue Gravity, Anthony Brady

LSU Doctoral Dissertations

The aim of this thesis is to highlight applications of quantum optics in two very distinct fields: space-based quantum communication and the Hawking effect in analogue gravity. Regarding the former: We simulate and analyze a constellation of satellites, equipped with entangled photon-pair sources, which provide on-demand entanglement distribution ser- vices to terrestrial receiver stations. Satellite services are especially relevant for long-distance quantum-communication scenarios, as the loss in satellite-based schemes scales more favor- ably with distance than in optical fibers or in atmospheric links, though establishing quantum resources in the space-domain is expensive. We thus develop an optimization technique which balances …


Quantum Optics, Entanglement, And Bell's Theorem, Andrew D. Poverman Jan 2021

Quantum Optics, Entanglement, And Bell's Theorem, Andrew D. Poverman

Senior Projects Spring 2021

The field of quantum optics provides a wonderful setting in which to study fundamental aspects of quantum mechanics such as entanglement, Bell's theorem, and non-locality. This thesis presents theoretical discussions of qubits, entanglement, and Bell's theorem in addition to experimental discussions on the nature of photons, creating entangled states using Spontaneous Parametric Down-Conversion (SPDC), and a Bell Test with polarization entangled photons. The experimental sections are written to be useful as instructions for one to conduct these experiments on their own. By doing these experiments, one will gain familiarity with quantum optics experiments as well as a firmer grasp on …


Optical-Depth Scaling Of Light Scattering From A Dense And Cold Atomic 87Rb Gas, K. J. Kemp, S. J. Roof, M. D. Havey, I. M. Sokolov, D. V. Kupriyanov, W. Guerin Jan 2020

Optical-Depth Scaling Of Light Scattering From A Dense And Cold Atomic 87Rb Gas, K. J. Kemp, S. J. Roof, M. D. Havey, I. M. Sokolov, D. V. Kupriyanov, W. Guerin

Physics Faculty Publications

We report investigation of near-resonance light scattering from a cold and dense atomic gas of 87Rb atoms. Measurements are made for probe frequencies tuned near the F=2→ F'=3 nearly closed hyperfine transition, with particular attention paid to the dependence of the scattered light intensity on detuning from resonance, the number of atoms in the sample, and atomic sample size. We find that, over a wide range of experimental variables, the optical depth of the atomic sample serves as an effective single scaling parameter which describes well all the experimental data.


Optimization Of Quantum Optical Metrology Systems, Nicholas Michael Studer Mar 2019

Optimization Of Quantum Optical Metrology Systems, Nicholas Michael Studer

LSU Doctoral Dissertations

It can be said that all of humanity's efforts can be understood as a problem of optimization. We each have a natural sense of what is ``good'' or ``bad'' and thus our actions tend towards maximizing -- or optimizing -- some notion of good and minimizing those things we perceive as bad or undesirable.

Within the sciences, the greatest form of good is knowledge. It is this pursuit of knowledge that leads to not only life-saving innovations and technology, but also to furthering our understanding of our natural world and driving our philosophical pursuits.

The principle method of obtaining knowledge …


Weak Measurements For Quantum Characterization And Control, Jonathan A. Gross Jul 2018

Weak Measurements For Quantum Characterization And Control, Jonathan A. Gross

Physics & Astronomy ETDs

This dissertation concerns itself with the virtues and vices of weak measurements. Weak measurements are all around us, but this does not mean that one should manufacture weakness on all occasions. We critically evaluate two proposals that claim weak measurements provide a novel means of performing quantum state tomography, allegedly increasing tomographic efficacy and yielding foundational insights into the nature of quantum mechanics. We find weak measurements are not an essential ingredient for most of their advertised features. In contrast to this negative finding, we highlight an optimal tomographic scheme for which weak continuous measurements are the best known implementation, …


Studies Of Light Generation With Four-Wave Mixing In A Cold Atomic Ensemble, Andrew Ferdinand Feb 2018

Studies Of Light Generation With Four-Wave Mixing In A Cold Atomic Ensemble, Andrew Ferdinand

Physics & Astronomy ETDs

Correlated light generated from atomic ensembles can have a central role in prominent quantum information protocols, such as long-distance quantum communication. Here we present our studies on three topics involving the generation of correlated light with four-wave mixing (FWM) in a cold atomic ensemble for applications in quantum communications with high capacity. We experimentally investigate the generation of light with seeded FWM in cold cesium atoms and the time correlations of photon pairs generated with spontaneous FWM. We theoretically investigate the correlations in orbital angular momentum of photon pairs generated with spontaneous FWM for a range of experimental geometries. These …


Energy-Constrained Quantum Communication And Digital Dynamical Decoupling, Haoyu Qi Oct 2017

Energy-Constrained Quantum Communication And Digital Dynamical Decoupling, Haoyu Qi

LSU Doctoral Dissertations

This is a two-part thesis glued together by an everlasting theme in Quantum Information Science \-- to save the quantum state, or the information stored in it, from unavoidably environment-induced noise. The first part of this thesis studies the ultimate rate of reliably transmitting information, stored in quantum systems, through a noisy evolution. Specifically, we consider communication over optical links, upon which future inter-city quantum communication networks will be built. We show how to treat the infinite-dimensional bosonic system rigorously and establish the theory of energy-constrained private and quantum communication over quantum channels. Our result represents important progress in the …


Studies In Mesoscopics And Quantum Microscopies, Zhenghao Ding, Gabriel C. Spalding May 2017

Studies In Mesoscopics And Quantum Microscopies, Zhenghao Ding, Gabriel C. Spalding

Honors Projects

This thesis begins with a foundational section on quantum optics. The single-photon detectors used in the first chapter were obtained through the Advanced Laboratory Physics Association (ALPhA), which brokered reduced cost for educational use, and the aim of the single-photon work presented in Chapter 1 is to develop modules for use in Illinois Wesleyan's instructional labs beyond the first year of university. Along with the American Association of Physics Teachers, ALPhA encourages capstone-level work, such as Chapter 1 of this honors thesis, which is explicitly designed to play the role of passing on, to a next generation of physics majors, …


Explorations Of Quantum Entanglement, John Stanton Apr 2017

Explorations Of Quantum Entanglement, John Stanton

Honor Scholar Theses

This thesis develops an undergraduate level understanding of quantum entanglement by expressing its properties in three unique mediums: mathematical formalism, application in technology and experiment. The mathematical formalism of entanglement is developed by working through theoretical experiments that utilize the entangled polarization states of photons. Notation used to describe entangled photon states is then used to illustrate how other types of entangled quantum states can be used in real technology, such as is the case with quantum computing. Finally, the theoretical predictions associated with entanglement are discussed in reference to two quantum optics experiments.


Effects Of Quantum Noise On A Two-Level System In A Single-Mode Cavity, Linda L. Vahala Aug 1990

Effects Of Quantum Noise On A Two-Level System In A Single-Mode Cavity, Linda L. Vahala

Electrical & Computer Engineering Faculty Publications

The effects of quantum noise on a two-level system in the bad-cavity regime are considered perturbatively in the form of closure at the pair-correlation level. It is found that pair-correlation effects can reduce the level of semiclassical chaos. However, under the rotating-wave approximation (RWA), quantum noise can lead to chaos if there is an initial population inversion, while the full RWA Hamiltonian system remains integrable.