Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Quantum Physics

Equations Of State For Warm Dense Carbon From Quantum Espresso, Derek J. Schauss Jan 2021

Equations Of State For Warm Dense Carbon From Quantum Espresso, Derek J. Schauss

Theses and Dissertations

Warm dense plasma is the matter that exists, roughly, in the range of 10,000 to 10,000,000 Kelvin and has solid-like densities, typically between 0.1 and 10 grams per centimeter. Warm dense fluids like hydrogen, helium, and carbon are believed to make up the interiors of many planets, white dwarfs, and other stars in our universe. The existence of warm dense matter (WDM) on Earth, however, is very rare, as it can only be created with high-energy sources like a nuclear explosion. In such an event, theoretical and computational models that accurately predict the response of certain materials are thus very …


Superfluidity In Neutron Stars, Samuel J. Witte Mar 2013

Superfluidity In Neutron Stars, Samuel J. Witte

Undergraduate Theses—Unrestricted

Nucleon pairing is studied with specific considerations directed toward the possible influence on neutron star cooling. We present an in-depth analysis of BCS theory using realistic nuclear potentials and consider the impact short-range correlations can have on the gap. Gap calculations are incorporated into neutron star cooling simulations and the significance of the 3P2 −3F2 channel in various hadronic cooling models is closely examined. An analysis of the 1S0 gap in neutron matter suggests short-range correlations can drastically alter the magnitude, density range, and temperature dependence of the gap. While the newly constructed 1S0 gap does not significantly alter the …


Energy Functional For Nuclear Masses, Michael Giovanni Bertolli Dec 2011

Energy Functional For Nuclear Masses, Michael Giovanni Bertolli

Doctoral Dissertations

An energy functional is formulated for mass calculations of nuclei across the nuclear chart with major-shell occupations as the relevant degrees of freedom. The functional is based on Hohenberg-Kohn theory. Motivation for its form comes from both phenomenology and relevant microscopic systems, such as the three-level Lipkin Model. A global fit of the 17-parameter functional to nuclear masses yields a root- mean-square deviation of χ[chi] = 1.31 MeV, on the order of other mass models. The construction of the energy functional includes the development of a systematic method for selecting and testing possible functional terms. Nuclear radii are computed within …