Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Nuclear

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 1 - 24 of 24

Full-Text Articles in Quantum Physics

True Random Number Generators, Jade Geng Jan 2023

True Random Number Generators, Jade Geng

Senior Projects Spring 2023

Quantum Random Number Generators(QRNGs), or True Random Number Generators, generate random numbers based on naturally unpredictable(or hard-to-predict) sources. Their unpredictability results in a broad application in cryptography and technology. Their sources range from nuclear decay gamma rays to cosmic rays, then to quantum optics. This thesis aims to explore various randomness sources and compare their efficiency by running a series of randomness tests. The specific setup for each random number generator will also be presented.


The Impact Of A Nuclear Disturbance On A Space-Based Quantum Network, Alexander Miloshevsky Dec 2022

The Impact Of A Nuclear Disturbance On A Space-Based Quantum Network, Alexander Miloshevsky

Doctoral Dissertations

Quantum communications tap into the potential of quantum mechanics to go beyond the limitations of classical communications. Currently, the greatest challenge facing quantum networks is the limited transmission range of encoded quantum information. Space-based quantum networks offer a means to overcome this limitation, however the performance of such a network operating in harsh conditions is unknown. This dissertation analyzes the capabilities of a space-based quantum network operating in a nuclear disturbed environment. First, performance during normal operating conditions is presented using Gaussian beam modeling and atmospheric modeling to establish a baseline to compare against a perturbed environment. Then, the DEfense …


Deformed No-Core Shell Model And Symplectic Effective Field Theory, David Kekejian Jan 2022

Deformed No-Core Shell Model And Symplectic Effective Field Theory, David Kekejian

LSU Doctoral Dissertations

Most nuclei are deformed! This simple fact has been established since Bohr and Mot- telson, and successfully demonstrated from first principles by nuclear structure calculations carried out using the ab-initio Symmetry-Adapted No-Core Shell Model (SA-NCSM) us- ing realistic interactions. This simple fact has been the main driver towards understanding the underlying physics; namely, that symplectic symmetry describes deformation and is a dominant symmetry in all nuclei independent of A (nucleon number) and of the realistic interaction used. These two simple observations laid the foundation of this thesis work to explore the applications of symplectic symmetry towards defining a deformed symplectic …


Neutron Spectroscopy Of The Parity-Violating 0.734 Ev Neutron Resonance In Lanthanum-139 In Preparation For The Noptrex Time Reversal Violation Experiment, Danielle Schaper Jan 2022

Neutron Spectroscopy Of The Parity-Violating 0.734 Ev Neutron Resonance In Lanthanum-139 In Preparation For The Noptrex Time Reversal Violation Experiment, Danielle Schaper

Theses and Dissertations--Physics and Astronomy

One of the most outstanding questions in physics is the matter-antimatter asymmetry of the Universe, resulting from excess baryogenesis processes during the early moments of the formation of the Universe. At present, the types of processes needed to explain this matter excess, so-called `CP-violating processes' are known to exist within the present framework of the Standard Model of particle physics. However, decades of research has shown that our understanding of the origin of these processes is incomplete, as we do not presently know of enough sources of CP-violating processes to account for the large baryon asymmetry that we observe. The …


Spectator Proton Detection And Reconstruction In Deep Inelastic D(E,EpS) Scattering, David Payette Apr 2021

Spectator Proton Detection And Reconstruction In Deep Inelastic D(E,EpS) Scattering, David Payette

Physics Theses & Dissertations

A Radial Time Projection Chamber (RTPC) was designed and installed in Jefferson Lab's Hall B as part of the BONuS12 (Barely Off-shell Nucleon Structure) experiment. The goal of BONuS12 is to accurately measure the structure function of the neutron by scattering 11 GeV electrons and detecting them with the CLAS12 spectrometer. Deuterium gas was used as an effective neutron target, and the new RTPC was used to detect low- momentum spectator protons. Protons follow a curved path in the 5 Tesla solenoid that is part of CLAS12, ionizing the He-CO2 gas in an annular drift region surrounding the target. These …


Exploring Qcd Factorization At Moderate Energy Scales, Eric Alan Moffat Apr 2021

Exploring Qcd Factorization At Moderate Energy Scales, Eric Alan Moffat

Physics Theses & Dissertations

Asymptotic freedom in QCD facilitates the use of partonic degrees of freedom over short distances, but physical processes are sensitive to a wide range of scales. Thus, it is necessary in QCD calculations to utilize a factorization scheme to separate a process into perturbative and non-perturbative factors. This separation relies on an assumption that one energy scale is infinitely larger than the other scales involved in the process. However, much experimental research in areas such as nucleon structure and quark-hadron duality occur at more moderate energy scales where that basic assumption may not be true but perturbative calculations should still …


Equations Of State For Warm Dense Carbon From Quantum Espresso, Derek J. Schauss Jan 2021

Equations Of State For Warm Dense Carbon From Quantum Espresso, Derek J. Schauss

Theses and Dissertations

Warm dense plasma is the matter that exists, roughly, in the range of 10,000 to 10,000,000 Kelvin and has solid-like densities, typically between 0.1 and 10 grams per centimeter. Warm dense fluids like hydrogen, helium, and carbon are believed to make up the interiors of many planets, white dwarfs, and other stars in our universe. The existence of warm dense matter (WDM) on Earth, however, is very rare, as it can only be created with high-energy sources like a nuclear explosion. In such an event, theoretical and computational models that accurately predict the response of certain materials are thus very …


Small-X Qcd Calculations With A Biased Ensemble, Gary Kapilevich Jun 2020

Small-X Qcd Calculations With A Biased Ensemble, Gary Kapilevich

Dissertations, Theses, and Capstone Projects

In this dissertation, I will argue that we can study functional fluctuations in unintegrated gluon distributions, in the MV model as well as JIMWLK, using reweighting techniques, which will allow me to calculate QCD observables with "biased ensembles". This technique will enable me to study rare functional configurations of the gluon distributions, that might have been selected for in, for example, the centrality criteria used by the ATLAS and ALICE collaborations. After a review of these techniques, as well as a review of QCD physics at high energy in general, I will use biased ensembles to compute observables in two …


The Pion Form Factor And Momentum And Angular Momentum Fractions Of The Proton In Lattice Qcd, Gen Wang Jan 2020

The Pion Form Factor And Momentum And Angular Momentum Fractions Of The Proton In Lattice Qcd, Gen Wang

Theses and Dissertations--Physics and Astronomy

Lattice Quantum Chromodynamics (QCD) provides a way to have a precise calculation and a new way of understanding the hadrons from first principles. From this perspective, this dissertation focuses first on a precise calculation of the pion form factor using overlap fermions on six ensembles of 2+1-flavor domain-wall configurations generated by the RBC/UKQCD collaboration with pion masses varying from 137 to 339 MeV. Taking advantage of the fast Fourier transform, low-mode substitution (LMS) and the multi-mass algorithm to access many combinations of source and sink momenta, we have done a simulation with various valence quark masses and with a range …


Magnetic Field Design To Reduce Systematic Effects In Neutron Electric Dipole Moment Measurements, James Ryan Dadisman Jan 2018

Magnetic Field Design To Reduce Systematic Effects In Neutron Electric Dipole Moment Measurements, James Ryan Dadisman

Theses and Dissertations--Physics and Astronomy

Charge-Conjugation (C) and Charge-Conjugation-Parity (CP) Violation is one of the three Sakharov conditions to explain via baryogenesis the observed baryon asymmetry of the universe (BAU). The Standard Model of particle physics (SM) contains sources of CP violation, but cannot explain the BAU. This motivates searches for new physics beyond the standard model (BSM) which address the Sakharov criteria, including high-precision searches for new sources of CPV in systems for which the SM contribution is small, but larger effects may be present in BSM theories. A promising example is the search for the electric dipole moment of the neutron (nEDM), which …


Hadron Physics In Tests Of Fundamental Symmetries, Chien Yeah Seng Jul 2016

Hadron Physics In Tests Of Fundamental Symmetries, Chien Yeah Seng

Doctoral Dissertations

Low energy precision tests of fundamental symmetries provide excellent probes for the Beyond Standard Model Physics. Theoretical interpretations of these experiments often involve the application of non-perturbative Quantum Chromodynamics in the study of hadronic matrix elements that may either serve as signals of new physics or Standard Model backgrounds. In this work I present a series of studies on different hadronic matrix elements using various low-energy effective approaches to Quantum Chromodynamics, and discuss the impact of these studies on our knowledge of Standard Model and Beyond Standard Model physics.


Simulation Of Nuclear Fusion Using A One Dimensional Particle In Cell Method, Steven T. Margell Jan 2016

Simulation Of Nuclear Fusion Using A One Dimensional Particle In Cell Method, Steven T. Margell

Cal Poly Humboldt theses and projects

In this thesis several novel techniques are developed to simulate fusion events in an isotropic, electrostatic three-dimensional Deuterium-Tritium plasma. These techniques allow us to accurately predict three-dimensional collision events with a one-dimensional model while simultaneously reducing compute time via a nearest neighbor algorithm. Furthermore, a fusion model based on first principles is developed that yields an average fusion reactivity which correlates well with empirical results.


Installation And Alignment Of The N3he Experiment, Eric Lee Plemons Dec 2015

Installation And Alignment Of The N3he Experiment, Eric Lee Plemons

Masters Theses

The n3He experiment is designed to probe the hadronic weak interaction by measuring the parity violating asymmetry between the spin of incoming neutrons and the momentum of outgoing protons following the nuclear break up of a helium three upon absorbing a neutron. Cold neutrons from the SNS are first polarized then allowed to impact a target chamber filled with helium three where the reaction occurs. Energetic particles resulting from the nuclear breakup ionize the helium three gas and are thereby detected as currents by an array of signal wires within the target chamber. In order to make a statistics limited …


Ultrasonic Bonding For The Cuore Collaboration, John J. Sekerak Ii Jun 2014

Ultrasonic Bonding For The Cuore Collaboration, John J. Sekerak Ii

Physics

This paper will give the reader a brief introduction to the Standard Model, Neutrinoless Double Beta Decay, and the CUORE experiment under construction at Gran Sasso National Lab in Assergi, Italy. The remainder of the paper will describe the bonding process used to connect the heater pads and NTDs to the copper housings of the tower structure. Extensive details of the troubleshooting and calibration period are presented as a way for the reader to better understand the concepts involved during the bonding stage of the assembly process.


The Dijet Cross Section Measurement In Proton-Proton Collisions At A Center Of Mass Energy Of 500 Gev At Star, Grant D. Webb Jan 2014

The Dijet Cross Section Measurement In Proton-Proton Collisions At A Center Of Mass Energy Of 500 Gev At Star, Grant D. Webb

Theses and Dissertations--Physics and Astronomy

Polarized deep inelastic scattering experiments play a vital role in the exploration of the spin structure of the proton. The polarized proton-proton collider at RHIC provides direct access to the gluon spin distribution through longitudinal double spin asymmetry measurements of inclusive jets, pions, and dijets. This thesis presents the measurement of the dijet double differential cross-section in proton-proton collisions at center of mass energies of √s = 500 GeV. The data represent an integrated luminosity of 8.7 pb-1 recorded by the STAR detector during the 2009 RHIC run. A comprehensive jet analysis was performed to determine the ideal …


Contributions To The Cuore Collaboration, Samuel Joseph Meijer Jul 2013

Contributions To The Cuore Collaboration, Samuel Joseph Meijer

Physics

This paper describes work done between 2010 and 2013 to contribute to the CUORE collaboration, a physics collaboration searching for neutrinoless double-beta decay in tellurium. Measurement of this decay would indicate fundamental information about the nature of the neutrino. The implementation of a parylene-coated detector frame is described. Also, a temperature stabilization system for an automated gluing system was constructed. An image recognition algorithm is described for locating spots of glue and evaluating their acceptability.


Superfluidity In Neutron Stars, Samuel J. Witte Mar 2013

Superfluidity In Neutron Stars, Samuel J. Witte

Undergraduate Theses—Unrestricted

Nucleon pairing is studied with specific considerations directed toward the possible influence on neutron star cooling. We present an in-depth analysis of BCS theory using realistic nuclear potentials and consider the impact short-range correlations can have on the gap. Gap calculations are incorporated into neutron star cooling simulations and the significance of the 3P2 −3F2 channel in various hadronic cooling models is closely examined. An analysis of the 1S0 gap in neutron matter suggests short-range correlations can drastically alter the magnitude, density range, and temperature dependence of the gap. While the newly constructed 1S0 gap does not significantly alter the …


Density Functional Theory And The Calculation Of Tcmg2O4 Spinel Lattice Parameters, Jon Karlo Macias Mar 2013

Density Functional Theory And The Calculation Of Tcmg2O4 Spinel Lattice Parameters, Jon Karlo Macias

Physics

The cohesive energy, lattice constant and bulk modulus of two simple HCP crystal structures of magnesium and technetium were calculated using the vienna ab initio simulation package (VASP) which is based on density functional theory (DFT). The same properties were determined for TcMg2O4 spinel. The theoretical results of the lattice constant of the pure crystals were compared to experimental results and found to be in excellent agreement with a difference of less than 2%. The results for the lattice constant of the TcMg2O4 spinel were found to be in excellent agreement as well with …


Phase Control In Atomic Coherence, Utsab Khadka Aug 2012

Phase Control In Atomic Coherence, Utsab Khadka

Graduate Theses and Dissertations

In this thesis, atomic coherence is used to enhance nonlinear optical processes in multi-level atoms. The multi-photon transitions are driven resonantly, and at the same time without absorptive losses, by using electromagnetically induced transparency (EIT), thereby allowing the study of χ(3) and χ(5) nonlinearities using weak driving fields. The coherently modified probe beam(s) and the atom-radiated signal fields arising from four- and six- wave- mixing (FWM and SWM) processes are measured in the spectral, temporal and spatial domains.

In a three-level ladder-type atomic system, multiple peaks having spectral asymmetries are observed in the EIT window as well as …


The First Direct Measurement Of The Weak Charge Of The Proton, John Poague Leckey Iv Jan 2012

The First Direct Measurement Of The Weak Charge Of The Proton, John Poague Leckey Iv

Dissertations, Theses, and Masters Projects

Qweak is an experiment currently running at the Thomas Jefferson National Accelerator Facility that uses parity-violating elastic electron-proton scattering to measure the weak charge of the proton QPweak . Longitudinally polarized electrons are scattered off a liquid hydrogen target and pass through a toroidal-field magnetic spectrometer. This experiment is a sensitive test for physics beyond the Standard Model, as QPweak is well predicted in the Standard Model. This dissertation describes the first direct measurement of QPweak . The precision that will be generated by the final 4% measurement will allow the probing of certain classes of new physics up to …


Energy Functional For Nuclear Masses, Michael Giovanni Bertolli Dec 2011

Energy Functional For Nuclear Masses, Michael Giovanni Bertolli

Doctoral Dissertations

An energy functional is formulated for mass calculations of nuclei across the nuclear chart with major-shell occupations as the relevant degrees of freedom. The functional is based on Hohenberg-Kohn theory. Motivation for its form comes from both phenomenology and relevant microscopic systems, such as the three-level Lipkin Model. A global fit of the 17-parameter functional to nuclear masses yields a root- mean-square deviation of χ[chi] = 1.31 MeV, on the order of other mass models. The construction of the energy functional includes the development of a systematic method for selecting and testing possible functional terms. Nuclear radii are computed within …


Baryon Spectrum Analysis Using Dirac's Covariant Constraint Dynamics, Joshua Franklin Whitney Dec 2011

Baryon Spectrum Analysis Using Dirac's Covariant Constraint Dynamics, Joshua Franklin Whitney

Doctoral Dissertations

We determine the energy spectrum of the baryons by treating each of them as a three-body system with the interacting forces coming from a set of two-body potentials that depend on both the distance between the quarks and the spin and orbital angular momentum coupling terms. We first review constraint dynamics for a relativistic two-body system in order to assemble the necessary two body framework for the three-body problem. We review the different types of covariant two-body interactions involved in constraint dynamics, including vector and scalar, and solve the problem of energy eigenstates using constraint dynamics. We use the Two …


Generalized Compton Amplitudes In Quantum Chromodynamics, Ignati Grigentch Apr 2000

Generalized Compton Amplitudes In Quantum Chromodynamics, Ignati Grigentch

Physics Theses & Dissertations

In this dissertation we describe results of our studies of generalized Compton amplitudes. We have calculated the one-loop corrections to the amplitude in the coordinate representation in terms of nonlocal string light-ray operators. We have also developed a consistent approach to the problem of constructing the gauge invariant Compton amplitude and obtained an expression for the explicitly gauge invariant amplitude which includes all the generalized target-mass corrections.


Modeling Charge Diffusion From Proton-Induced Ionization Tracks In Silicon Photodiode Arrays, Lee Cole Smith Aug 1982

Modeling Charge Diffusion From Proton-Induced Ionization Tracks In Silicon Photodiode Arrays, Lee Cole Smith

Physics Theses & Dissertations

We are modeling the combined problem of generation and collection of charge carriers created during passage of energetic protons through a silicon photodiode array. We have also experimentally obtained pulse-height distributions of noise charge collected during exposure of a Digicon-type diode array to 21 and 75 MeV protons. It is shown that the magnitude of charge collected by a diode from each proton event is determined not only by diffusion, but by statistical considerations involving the ionization process itself. Utilizing analytical solutions to the diffusion equation for transport of minority carriers, together with the Vavilov-Landau theory of energy-loss fluctuations in …