Open Access. Powered by Scholars. Published by Universities.®

Other Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2012

Discipline
Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 62

Full-Text Articles in Other Physics

Simultaneous Radar And Video Meteors, Robert J. Weryk Dec 2012

Simultaneous Radar And Video Meteors, Robert J. Weryk

Electronic Thesis and Dissertation Repository

The goal of this thesis is to better understand the physical and chemical properties of meteoroids by using simultaneous radar and video observations of meteors. The Canadian Meteor Orbit Radar (CMOR) and several Gen-III image-intensified CCD cameras were used to measure common meteors and validate metric errors determined through Monte Carlo modelling and to relate radar electron line density (q) to video photon radiant power (I). By adopting an ionisation coefficient from Jones (1997) and using recorded measurements of q/I, a corresponding estimate of the fraction of meteoroid kinetic energy loss converted into light (luminous efficiency) was found.

It was …


Aspects Of General Relativity In 1+1 Dimensions, Richard D. Mellinger Jr Dec 2012

Aspects Of General Relativity In 1+1 Dimensions, Richard D. Mellinger Jr

Physics

What would be the properties of a universe with only one spatial dimension and one time dimension? General relativity in 1+1 dimensions is unique since the two curvature terms in the Einstein field equations cancel. This makes the Einstein field equations algebraic rather than differential equations. This special feature can make 1+1 dimensionality attractive as an instructional tool to simplify the mathematics that many beginners find opaque. We explore the implications and features of the Einstein field equations in 1+1 dimensions and find they provide a surprisingly rich and interesting model. We then study an alternate theory and its implications …


Development Of A Novel Technique For Predicting Tumor Response In Adaptive Radiation Therapy, Rebecca Marie Seibert Dec 2012

Development Of A Novel Technique For Predicting Tumor Response In Adaptive Radiation Therapy, Rebecca Marie Seibert

Doctoral Dissertations

This dissertation concentrates on the introduction of Predictive Adaptive Radiation Therapy (PART) as a potential method to improve cancer treatment. PART is a novel technique that utilizes volumetric image-guided radiation therapy treatment (IGRT) data to actively predict the tumor response to therapy and estimate clinical outcomes during the course of treatment. To implement PART, a patient database containing IGRT image data for 40 lesions obtained from patients who were imaged and treated with helical tomotherapy was constructed. The data was then modeled using locally weighted regression. This model predicts future tumor volumes and masses and the associated confidence intervals based …


Logistic Curves, Extraction Costs And Peak Oil, Robert J. Brecha Dec 2012

Logistic Curves, Extraction Costs And Peak Oil, Robert J. Brecha

Physics Faculty Publications

Debates about the possibility of a near-term maximum in world oil production have become increasingly prominent over the past decade, with the focus often being on the quantification of geologically available and technologically recoverable amounts of oil in the ground. Economically, the important parameter is not a physical limit to resources in the ground, but whether market price signals and costs of extraction will indicate the efficiency of extracting conventional or nonconventional resources as opposed to making substitutions over time for other fuels and technologies. We present a hybrid approach to the peak-oil question with two models in which the …


Evaluation Of Polymer Gel Dosimeters For Measurements Of Dose And Let In Proton Beams, Kevin M. Vredevoogd Dec 2012

Evaluation Of Polymer Gel Dosimeters For Measurements Of Dose And Let In Proton Beams, Kevin M. Vredevoogd

Dissertations & Theses (Open Access)

This project assessed the effectiveness of polymer gel dosimeters as tools for measuring the dose deposited by and LET of a proton beam. A total of three BANG® dosimeter formulations were evaluated: BANG®-3-Pro-2 BANGkits™ for dose measurement and two BANG®-3 variants, the LET-Baseline and LET-Meter dosimeters, for LET measurement. All dosimeters were read out using an OCT scanner. The basic characteristics of the BANGkits™ were assessed in a series of photon and electron irradiations. The dose-response relationship was found to be sigmoidal with a threshold for response of approximately 15 cGy. The active region of the dosimeter, the volume in …


Economics Of Nuclear Power And Climate Change Mitigation Policies, Nico Bauer, Robert J. Brecha, Gunnar Luderer Oct 2012

Economics Of Nuclear Power And Climate Change Mitigation Policies, Nico Bauer, Robert J. Brecha, Gunnar Luderer

Physics Faculty Publications

The events of March 2011 at the nuclear power complex in Fukushima, Japan, raised questions about the safe operation of nuclear power plants, with early retirement of existing nuclear power plants being debated in the policy arena and considered by regulators. Also, the future of building new nuclear power plants is highly uncertain. Should nuclear power policies become more restrictive, one potential option for climate change mitigation will be less available. However, a systematic analysis of nuclear power policies, including early retirement, has been missing in the climate change mitigation literature. We apply an energy economy model framework to derive …


Equilibrium Magnetic States In Individual Hemispherical Permalloy Caps, Robert Streubel, Volodymyr P. Kravchuk, Denis D. Sheka, Denys Makarov, Florian Kronast, Oliver G. Schmidt, Yuri Gaididei Sep 2012

Equilibrium Magnetic States In Individual Hemispherical Permalloy Caps, Robert Streubel, Volodymyr P. Kravchuk, Denis D. Sheka, Denys Makarov, Florian Kronast, Oliver G. Schmidt, Yuri Gaididei

Robert Streubel Papers

The magnetization distributions in individual soft magnetic permalloy caps on non-magnetic spherical particles with sizes ranging from 50 to 800nm are investigated. We experimentally visualize the magnetic structures at the resolution limit of the x-ray magnetic circular dichroism photoelectron emission microscopy (XMCD-PEEM). By analyzing the so-called tail contrast in XMCD-PEEM, the spatial resolution is significantly enhanced, which allowed us to explore magnetic vortices and their displacement on curved surfaces. Furthermore, cap nanostructures are modeled as extruded hemispheres to determine theoretically the phase diagram of equilibrium magnetic states. The calculated phase diagram agrees well with the experimental observations. © 2012 American …


Fast Super-Resolution Using An Adaptive Wiener Filter With Robustness To Local Motion, Russell C. Hardie, Kenneth J. Barnard Sep 2012

Fast Super-Resolution Using An Adaptive Wiener Filter With Robustness To Local Motion, Russell C. Hardie, Kenneth J. Barnard

Electrical and Computer Engineering Faculty Publications

We present a new adaptive Wiener filter (AWF) super-resolution (SR) algorithm that employs a global background motion model but is also robust to limited local motion. The AWF relies on registration to populate a common high resolution (HR) grid with samples from several frames. A weighted sum of local samples is then used to perform nonuniform interpolation and image restoration simultaneously. To achieve accurate subpixel registration, we employ a global background motion model with relatively few parameters that can be estimated accurately. However, local motion may be present that includes moving objects, motion parallax, or other deviations from the background …


Utilization Of A Tropospheric-Stratospheric Lidar System To Study Mountain Induced Gravity Waves Over Jenny Jump State Forest, Anthony Teti Aug 2012

Utilization Of A Tropospheric-Stratospheric Lidar System To Study Mountain Induced Gravity Waves Over Jenny Jump State Forest, Anthony Teti

Theses

Gravity waves are a dominant driver of the middle and lower atmospheric circulation. Yet such waves have been difficult to study due to their inherent small spatial and temporal scales and synoptic occurrence, and thus require advanced experimental systems. In this thesis first results are presented from a newly constructed tropospheric-stratospheric lidar operating at the New Jersey Institute of Technology-United Astronomy Clubs of New Jersey site in Jenny Jump State Forest in northwest New Jersey. The system utilizes a 4-W 532-nm Nd:YAG laser transmitter and a 4-inch telescope receiver to collect backscattered photons from the lower atmosphere in order to …


Supersymmetric Quantum Mechanics And Solvable Models, Asim Gangopadhyaya, Jonathan Bougie, Jeffrey Mallow, C. Rasinariu Aug 2012

Supersymmetric Quantum Mechanics And Solvable Models, Asim Gangopadhyaya, Jonathan Bougie, Jeffrey Mallow, C. Rasinariu

Physics: Faculty Publications and Other Works

We review solvable models within the framework of supersymmetric quantum mechanics (SUSYQM). In SUSYQM, the shape invariance condition insures solvability of quantum mechanical problems. We review shape invariance and its connection to a consequent potential algebra. The additive shape invariance condition is specified by a difference-differential equation; we show that this equation is equivalent to an infinite set of partial differential equations. Solving these equations, we show that the known list of h-independent superpotentials is complete. We then describe how these equations could be extended to include superpotentials that do depend on h.


Investigation Of Vopcpho As An Acceptor Material For Bulk Heterojunction Solar Cells, Shahino Mah Abdullah Aug 2012

Investigation Of Vopcpho As An Acceptor Material For Bulk Heterojunction Solar Cells, Shahino Mah Abdullah

Shahino Mah Abdullah

In this study, we have successfully demonstrated a new system of donor–acceptor blend for bulk heterojunction solar cells of poly(3-hexylthiophene) (P3HT) by using vanadyl 2,9,16,23-tetraphenoxy-29H,31H-phthalocyanine (VOPcPhO) as acceptor material. A broad absorption over the whole visible range (450–750 nm) is achieved. Utilizing this blend system in solar cell fabrication, ITO/PEDOT:PSS/P3HT:VOPcPhO/Al solar cells have been fabricated and characterized in open air. A maximum power conversation efficiency up to 1.09% has been recorded. To confirm the charge transport, the electron and hole mobility of VoPcPhO has been measured. The results show that the VoPcPhO has bipolar transport and can act as an …


Characterization Of Structured Nanomaterials Using Terahertz Frequency Radiation, Andrew Niklas Aug 2012

Characterization Of Structured Nanomaterials Using Terahertz Frequency Radiation, Andrew Niklas

Andrew Niklas

Measurements that use terahertz frequency radiation to characterize materials are beneficial for scientists trying to determine the physical parameters that govern the interaction of electromagnetic waves and matter at those frequencies. Results will be presented of time domain terahertz spectroscopy measurements taken in forward and backward scattering directions from vertically aligned arrays of multi‐walled carbon nanotubes and thin films of perforated copper. The intent of this research is to both corroborate results from independent research groups conducting similar experiments and to further increase understanding in the scientific community with respect to carbon nanotube reflection phenomena at terahertz frequencies.


Electronics Development For The Cherenkov Telescope Array, Margaret C. Murphy, Justin Vandenbrouke Aug 2012

Electronics Development For The Cherenkov Telescope Array, Margaret C. Murphy, Justin Vandenbrouke

STAR Program Research Presentations

Gamma-ray astronomy promises to elucidate the highest-energy particle accelerators in the Universe, and could play a key role in identifying the nature of dark matter. The Cherenkov Telescope Array (CTA), currently in the research and development stage, will study and capture gamma-rays with an order of magnitude grater sensitivity than the instruments already in place. Each telescope in the array will be equipped with dozens of camera modules each containing four TeV Array Readout with GSa/s sampling and Event Trigger (TARGET) chips. TARGET 4 has many internal settings, several of which were tested and analyzed to achieve an optimal operating …


Development And Implementation Of A Remote Audit Tool For High Dose Rate (Hdr) 192ir Brachytherapy Using Optically Stimulated Luminescence Dosimetry, Kevin Casey Aug 2012

Development And Implementation Of A Remote Audit Tool For High Dose Rate (Hdr) 192ir Brachytherapy Using Optically Stimulated Luminescence Dosimetry, Kevin Casey

Dissertations & Theses (Open Access)

This work aimed to create a mailable and OSLD-based phantom with accuracy suitable for RPC audits of HDR brachytherapy sources at institutions participating in NCI-funded cooperative clinical trials. An 8 × 8 × 10 cm3 prototype with two slots capable of holding nanoDot Al2O3:C OSL dosimeters (Landauer, Glenwood, IL) was designed and built. The phantom has a single channel capable of accepting all 192Ir HDR brachytherapy sources in current clinical use in the United States. Irradiations were performed with an 192Ir HDR source to determine correction factors for linearity with dose, dose rate, …


Development And Implementation Of The Use Of Optically Stimulated Luminescent Detectors In The Radiological Physics Center Anthropomorphic Quality Assurance Phantoms, Jennelle Bergene Aug 2012

Development And Implementation Of The Use Of Optically Stimulated Luminescent Detectors In The Radiological Physics Center Anthropomorphic Quality Assurance Phantoms, Jennelle Bergene

Dissertations & Theses (Open Access)

The Radiological Physics Center (RPC) uses both on-site and remote reviews to credential institutions for participation in clinical trials. Anthropomorphic quality assurance (QA) phantoms are one tool the RPC uses to remotely audit institutions, which include thermoluminescent dosimeters (TLDs) and radiochromic film. The RPC desires to switch from TLD as the absolute dosimeter in the phantoms, to optically stimulated luminescent dosimeters (OSLDs), but a problem lies in the angular dependence exhibited by the OSLD. The purpose of this study was to characterize the angular dependence of OSLD and establish a correction factor if necessary, to provide accurate dosimetric measurements as …


A Long-Channel Model For The Asymmetric Double-Gate Mosfet Valid In All Regions Of Operation, Abhishek Kammula, Bradley Minch Jul 2012

A Long-Channel Model For The Asymmetric Double-Gate Mosfet Valid In All Regions Of Operation, Abhishek Kammula, Bradley Minch

Bradley Minch

We present a physically based, continuous analytical model for long-channel double-gate MOSFETs. The model is particularly well suited for implementation in circuit simulators due to the simple expressions for the current andthe continuous nature of the derivatives of the current which improves convergence behavior.


A Reduced Model Of Cavitation Physics For Use In Sonochemistry, Brian Storey, Andrew Szeri Jul 2012

A Reduced Model Of Cavitation Physics For Use In Sonochemistry, Brian Storey, Andrew Szeri

Brian Storey

Sonochemistry involves focusing acoustic energy through cavitation bubbles to increase chemical activity. The violent bubble collapses lead to temperatures of several thousand kelvin, which drive chemical reactions. In previous work, we gave a detailed computational model of a single bubble collapse, taking into account phase change, mass diffusion, heat diffusion and chemical reactions. All of these phenomena are important in determining the conditions at collapse. The present work involves development of a much simpler model that includes all the physics relevant to the determination of the reaction products. Comparisons with the more detailed computations are made; the reduced model is …


Water Vapour, Sonoluminescence And Sonochemistry, Brian Storey, Andrew Szeri Jul 2012

Water Vapour, Sonoluminescence And Sonochemistry, Brian Storey, Andrew Szeri

Brian Storey

Sonoluminescence is the production of light from acoustically forced bubbles; sonochemistry is a related chemical processing technique. The two phenomena share a sensitive dependence on the liquid phase. The present work is an investigation of the fate and consequences of water vapour in the interior of strongly forced argon micro–bubbles. Due to the extreme nonlinearity of the volume oscillations, excess water vapour is trapped in the bubble during a rapid inertial collapse. Water vapour is prevented from exiting by relatively slow diffusion and non–equilibrium condensation at the bubble wall. By reducing the compression heating of the mixture and through primarily …


The Double Pendulum: Construction And Exploration, Benjamin J. Knudson Jul 2012

The Double Pendulum: Construction And Exploration, Benjamin J. Knudson

Physics

The exploration of a nonlinear mechanical system, the Double Pendulum, a physical pendulum on the end of a physical pendulum, using analytic and experimental approaches. Also included discussion of the design and construction of the Double Pendulum apparatus to work with Vernier LabPro and LoggerPro. The apparatus outputs live data of the angles to a LoggerPro which collects and produces time evolution graphs as well as a corresponding animation lending itself to comparison with theoretical models. Normal mode frequencies are found both analytically and experimentally for the the general (real) double pendulum. Examples of both simple (periodic) and complex (chaotic) …


Development Of A Pyrotechnic Shock Simulation Apparatus For Spacecraft Applications, Joseph Binder, Matthew Mccarty, Chris Rasmussen Jun 2012

Development Of A Pyrotechnic Shock Simulation Apparatus For Spacecraft Applications, Joseph Binder, Matthew Mccarty, Chris Rasmussen

Aerospace Engineering

This report details the research, design, construction, and testing of a pyrotechnic shock simulation apparatus for spacecraft applications. The apparatus was developed to be used in the Space Environments Lab at California Polytechnic State University. It will be used for testing spacecraft components with dimensions up to 24”x12”x12” as well as CubeSats. Additionally, it may be used as an instructional or demonstrational tool in the Aerospace Department’s space environments course. The apparatus functions by way of mechanical impact of an approximately 20 lb stainless steel swinging hammer. Tests were performed to verify the simulator’s functionality. Suggestions for improvement and further …


Studying Beam Dynamics At Cesrta, Matthew (Matt) Randazzo Jun 2012

Studying Beam Dynamics At Cesrta, Matthew (Matt) Randazzo

Physics

The Cornell Electron Storage Ring Test Accelerator (CesrTA) is a particle accelerator acting primarily as a laboratory for studying accelerator physics under a variety of conditions. Here, the experimental program on electron cloud effects is one of the highest-priority research and development projects during the International Linear Collider (ILC) Technical Design Phase 1. These electron clouds are of particular concern for the design of future low emittance rings like those in the ILC because of how they can adversely affect the performance of accelerators. The impact of electron clouds on the dynamics of individual bunches along a train known as …


Two Numerical Algorithms For Solving A Partial Integro-Differential Equation With A Weakly Singular Kernel, Jeong-Mi Yoon, Shishen Xie, Volodymyr Hrynkiv Jun 2012

Two Numerical Algorithms For Solving A Partial Integro-Differential Equation With A Weakly Singular Kernel, Jeong-Mi Yoon, Shishen Xie, Volodymyr Hrynkiv

Applications and Applied Mathematics: An International Journal (AAM)

Two numerical algorithms based on variational iteration and decomposition methods are developed to solve a linear partial integro-differential equation with a weakly singular kernel arising from viscoelasticity. In addition, analytic solution is re-derived by using the variational iteration method and decomposition method.


Formalizing Mission Analysis And Design Techniques For High Altitude Ballooning, Jeremy Straub, Ronald Fevig Jun 2012

Formalizing Mission Analysis And Design Techniques For High Altitude Ballooning, Jeremy Straub, Ronald Fevig

Jeremy Straub

High altitude balloon (HAB) missions can be and are used to teach concepts related to spacecraft and satellite design. A HAB mission, however, presents unique characteristics, which must be understood and respected to produce a desirable outcome. Because of this, flying an unaltered satellite design as a HAB payload would be as undesirable as utilizing an unaltered HAB design as a satellite. A well-defined process for HAB mission design is thus needed. The process presented mirrors commonly used space mission design processes to facilitate easy transition between the two. It is also comparatively simple, due to the smaller scale of …


Gaussian Beam Steering On A Target Plane Via High Speed Orthogonal Mirror-Mounted Galvanometers, Keith Gresiak Jun 2012

Gaussian Beam Steering On A Target Plane Via High Speed Orthogonal Mirror-Mounted Galvanometers, Keith Gresiak

Physics

No abstract provided.


Mhd Mixed Convective Flow Of Viscoelastic And Viscous Fluids In A Vertical Porous Channel, R. Sivaraj, B. R. Kumar, J. Prakash Jun 2012

Mhd Mixed Convective Flow Of Viscoelastic And Viscous Fluids In A Vertical Porous Channel, R. Sivaraj, B. R. Kumar, J. Prakash

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, we analyze the problem of steady, mixed convective, laminar flow of two incompressible, electrically conducting and heat absorbing immiscible fluids in a vertical porous channel filled with viscoelastic fluid in one region and viscous fluid in the other region. A uniform magnetic field is applied in the transverse direction, the fluids rise in the channel driven by thermal buoyancy forces associated with thermal radiation. The equations are modeled using the fully developed flow conditions. An exact solution is obtained for the velocity, temperature, skin friction and Nusselt number distributions. The physical interpretation to these expressions is examined …


New Explicit Solutions For Homogeneous Kdv Equations Of Third Order By Trigonometric And Hyperbolic Function Methods, Marwan Alquran, Roba Al-Omary, Qutaibeh Katatbeh Jun 2012

New Explicit Solutions For Homogeneous Kdv Equations Of Third Order By Trigonometric And Hyperbolic Function Methods, Marwan Alquran, Roba Al-Omary, Qutaibeh Katatbeh

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, we study two-component evolutionary systems of the homogeneous KdV equation of the third order types (I) and (II). Trigonometric and hyperbolic function methods such as the sine-cosine method, the rational sine-cosine method, the rational sinh-cosh method, sech-csch method and rational tanh-coth method are used for analytical treatment of these systems. These methods, have the advantage of reducing the nonlinear problem to a system of algebraic equations that can be solved by computerized packages.


Boundary Stabilization Of Torsional Vibrations Of A Solar Panel, Prasanta K. Nandi, Ganesh C. Gorain, Samarjit Kar Jun 2012

Boundary Stabilization Of Torsional Vibrations Of A Solar Panel, Prasanta K. Nandi, Ganesh C. Gorain, Samarjit Kar

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, we study a boundary stabilization of the torsional vibrations of a solar panel. The panel is held by a rigid hub at one end and is totally free at the other. The dynamics of the overall system leads to hybrid system of equations. It is set to a certain initial vibrations with a control torque as a stabilizer at the hub end only. Taking a non-linear damping as boundary stabilizer, a uniform exponential energy decay rate is obtained directly. Thus an explicit form of uniform stabilization of the system is achieved by means of the exponential energy …


Evolution Of 3-D Magnetic Topology In Flare-Productive Active Regions, Yixuan Li May 2012

Evolution Of 3-D Magnetic Topology In Flare-Productive Active Regions, Yixuan Li

Dissertations

Solar eruptive phenomena, such as flares and coronal mass ejections (CMEs), derive their energy from complex magnetic fields and are the principal source of disturbances that affect space weather. Although physical mechanism and dynamic morphology of flares have been a subject of intense research, many aspects of the flaring process still remain unclear. The objective of this dissertation is to advance the understanding of the physics behind solar flares based on observations, simulations and nonlinear force-free (NLFF) field modeling of magnetic fields.

The data used in this study are obtained from several ground-based or space-borne instruments, including BBSO/DVMG, Hinode/SOT/SP, SDO/HMI …


Magnetic Vortices On Closely Packed Spherically Curved Surfaces, Robert Streubel, Denys Makarov, Florian Kronast, Volodymyr Kravchuk, Manfred Albrecht, Oliver G. Schmidt May 2012

Magnetic Vortices On Closely Packed Spherically Curved Surfaces, Robert Streubel, Denys Makarov, Florian Kronast, Volodymyr Kravchuk, Manfred Albrecht, Oliver G. Schmidt

Robert Streubel Papers

We investigate the change of magnetic vortex states driven by curvature. The equilibrium state and magnetization reversal of soft magnetic permalloy (Py, Ni 80Fe 20) caps on self-assembled spherical particles with diameters of 100, 330, and 800 nm are investigated, revealing the vortex ground state for individual caps and closely packed cap arrays. The magnetic coupling between vortices is substantially reduced due to the shape of the cap as apparent in a much weaker dependence of the magnetization reversal process on the separation distance. Interestingly, the remaining coupling is still sufficiently large to introduce chirality frustrated vortex states …


Characterization Of A Thermal Reservoir For Consistent And Accurate Annealing Of High Sensitivity Thermoluminescence Dosimeters In Brachytherapy Dosimetry, William Patrick Donahue May 2012

Characterization Of A Thermal Reservoir For Consistent And Accurate Annealing Of High Sensitivity Thermoluminescence Dosimeters In Brachytherapy Dosimetry, William Patrick Donahue

Honors Scholar Theses

Unlike regular TLD, an accurate and consistent annealing of the high-sensitivity TLD at 240 ˚C for 15 minutes is challenging using conventional annealing ovens because the temperature in the oven chamber varies drastically over the 15-minute period after the opening (to put the TLD tray in) and closing of oven door. The temperature in the oven drops dramatically after the door is opened and ramps up gradually after the door is closed, often accompanied with significant temperature overshoot. Because an overshoot by more than 5 ˚C can significantly reduce the sensitivity of the TLD and the ramp-up profile varies with …