Open Access. Powered by Scholars. Published by Universities.®

Other Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Other Physics

Measuring Nonlinear Properties Of Graphene Thin Films Using Z-Scan Technique, Thekrayat Hassan Al Abdulaal Dec 2016

Measuring Nonlinear Properties Of Graphene Thin Films Using Z-Scan Technique, Thekrayat Hassan Al Abdulaal

Graduate Theses and Dissertations

The nonlinear studies of two-dimensional (2D) nanomaterials, specifically graphene, are very significant since graphene is finding its usefulness in handling the enormous heat in nanoscale high-density power electronics. Graphene has emerged to be a promising nanomaterial as an excellent heat spreader due to its high thermal conductivity. However, the experimental nonlinear study of graphene materials and their application in developing future optoelectronic devices demands for more developed research.

The research objective is first to build a precise, and sensitive technique to investigate and understand the thermal nonlinear properties, including nonlinear refractive index (n2), nonlinear absorption coefficient (β), and thermo-optic coefficient …


Effect Of Void Fraction On Transverse Shear Modulus Of Advanced Unidirectional Composites, Jui-He Tai Oct 2016

Effect Of Void Fraction On Transverse Shear Modulus Of Advanced Unidirectional Composites, Jui-He Tai

USF Tampa Graduate Theses and Dissertations

In composite materials, transverse shear modulus is a critical moduli parameter for designing complex composite structures. For dependable mathematical modeling of mechanical behavior of composite materials, an accurate estimate of the moduli parameters is critically important as opposed to estimates of strength parameters where underestimation may lead to a non-optimal design but still would give one a safe one.

Although there are mechanical and empirical models available to find transverse shear modulus, they are based on many assumptions. In this work, the model is based on a three-dimensional elastic finite element analysis with multiple cells. To find the shear modulus, …


Optimization-Free Optical Focal Field Engineering Through Reversing The Radiation Pattern From A Uniform Line Source, Yanzhong Yu, Qiwen Zhan Sep 2016

Optimization-Free Optical Focal Field Engineering Through Reversing The Radiation Pattern From A Uniform Line Source, Yanzhong Yu, Qiwen Zhan

Qiwen Zhan

A simple and flexible method is presented for the generation of optical focal field with prescribed characteristics. By reversing the field pattern radiated from a uniform line source, for which the electric current is constant along its extent, situated at the focus of a 4Pi focusing system formed by two confocal high-NA objective lenses, the required illumination distribution at the pupil plane for creating optical focal field with desired properties can be obtained. Numerical example shows that an arbitrary length optical needle with extremely high longitudinal polarization purity and consistent transverse size of ~0.36λ over the entire depth of focus …


Tailoring Optical Complex Fields With Nano-Metallic Surfaces, Guanghao Rui, Qiwen Zhan Sep 2016

Tailoring Optical Complex Fields With Nano-Metallic Surfaces, Guanghao Rui, Qiwen Zhan

Qiwen Zhan

Recently there is an increasing interest in complex optical fields with spatially inhomogeneous state of polarizations and optical singularities. Novel effects and phenomena have been predicted and observed for light beams with these unconventional states. Nanostructured metallic thin film offers unique opportunities to generate, manipulate and detect these novel fields. Strong interactions between nano-metallic surfaces and complex optical fields enable the development of highly compact and versatile functional devices and systems. In this review, we first briefly summarize the recent developments in complex optical fields. Various nano-metallic surface designs that can produce and manipulate complex optical fields with tailored characteristics …


Creation Of Identical Multiple Focal Spots With Prescribed Axial Distribution, Yanzhong Yu, Qiwen Zhan Sep 2016

Creation Of Identical Multiple Focal Spots With Prescribed Axial Distribution, Yanzhong Yu, Qiwen Zhan

Qiwen Zhan

We present a scheme for the construction of coaxially equidistant multiple focal spots with identical intensity profiles for each individual focus and a predetermined number and spacing. To achieve this, the radiation field from an antenna is reversed and then gathered by high numerical aperture objective lenses. Radiation patterns from three types of line sources, i.e., the electric current, magnetic current and electromagnetic current distributions, with cosine-squared taper are respectively employed to generate predominately longitudinally polarized bright spots, azimuthally polarized doughnuts, and focal spots with a perfect spherically symmetric intensity distribution. The required illuminations at the pupil plane of a …


Digital Image Processing, Russell C. Hardie, Majeed M. Hayat Sep 2016

Digital Image Processing, Russell C. Hardie, Majeed M. Hayat

Russell C. Hardie

In recent years, digital images and digital image processing have become part of everyday life. This growth has been primarily fueled by advances in digital computers and the advent and growth of the Internet. Furthermore, commercially available digital cameras, scanners, and other equipment for acquiring, storing, and displaying digital imagery have become very inexpensive and increasingly powerful. An excellent treatment of digital images and digital image processing can be found in Ref. [1]. A digital image is simply a two-dimensional array of finite-precision numerical values called picture elements (or pixels). Thus a digital image is a spatially discrete (or discrete-space) …


Developing Hyperpolarized Silicon Particles For In Vivo Mri Targeting Of Ovarian Cancer, Nicholas Whiting, Jingzhe Hu, Niki M. Zacharias, Ganesh L. R. Lokesh, David E. Volk, David G. Menter, Rajesha Rupaimoole, Rebecca Previs, Anil K. Sood, Pratip Bhattacharya Aug 2016

Developing Hyperpolarized Silicon Particles For In Vivo Mri Targeting Of Ovarian Cancer, Nicholas Whiting, Jingzhe Hu, Niki M. Zacharias, Ganesh L. R. Lokesh, David E. Volk, David G. Menter, Rajesha Rupaimoole, Rebecca Previs, Anil K. Sood, Pratip Bhattacharya

Nicholas Whiting

Silicon-based nanoparticles are ideally suited for use as biomedical imaging agents due to their biocompatibility, biodegradability, and simple surface chemistry that facilitates drug loading and targeting. A method of hyperpolarizing silicon particles using dynamic nuclear polarization, which increases magnetic resonance imaging signals by several orders-of-magnitude through enhanced nuclear spin alignment, has recently been developed to allow silicon particles to function as contrast agents for in vivo magnetic resonance imaging. The enhanced spin polarization of silicon lasts significantly longer than other hyperpolarized agents (tens of minutes, whereas <1  min for other species at room temperature), allowing a wide range of potential …


Abstracts From The 2016 Ahac Conference, Erick Agrimson Aug 2016

Abstracts From The 2016 Ahac Conference, Erick Agrimson

2017 Academic High Altitude Conference

This is a listing of Abstracts from AHAC 2016


Phase Gradient Algorithm Method For 3-D Holographic Ladar Imaging, Jason W. Stafford, Bradley D. Duncan, David J. Rabb Aug 2016

Phase Gradient Algorithm Method For 3-D Holographic Ladar Imaging, Jason W. Stafford, Bradley D. Duncan, David J. Rabb

Bradley D. Duncan

3-D holographic ladar uses digital holography with frequency diversity to add the ability to resolve targets in range. A key challenge is that since individual frequency samples are not recorded simultaneously, differential phase aberrations may exist between them making it difficult to achieve range compression. We describe steps specific to this modality so that phase gradient algorithms (PGA) can be applied to 3-D holographic ladar data for phase corrections across multiple temporal frequency samples. Substantial improvement of range compression is demonstrated with a laboratory experiment where our modified PGA technique is applied. Additionally, the PGA estimator is demonstrated to be …


Chiral Light Intrinsically Couples To Extrinsic/Pseudo-Chiral Metasurfaces Made Of Tilted Gold Nanowires, Alessandro Belardini, Marco Centini, Grigore Leahu, David C. Hooper, Roberto Li Voti, Eugenio Fazio, Joseph W. Haus, Andrew Sarangan, Ventsislav K. Valev, Concita Sibilia Aug 2016

Chiral Light Intrinsically Couples To Extrinsic/Pseudo-Chiral Metasurfaces Made Of Tilted Gold Nanowires, Alessandro Belardini, Marco Centini, Grigore Leahu, David C. Hooper, Roberto Li Voti, Eugenio Fazio, Joseph W. Haus, Andrew Sarangan, Ventsislav K. Valev, Concita Sibilia

Electro-Optics and Photonics Faculty Publications

Extrinsic or pseudo-chiral (meta)surfaces have an achiral structure, yet they can give rise to circular dichroism when the experiment itself becomes chiral. Although these surfaces are known to yield differences in reflected and transmitted circularly polarized light, the exact mechanism of the interaction has never been directly demonstrated. Here we present a comprehensive linear and nonlinear optical investigation of a metasurface composed of tilted gold nanowires. In the linear regime, we directly demonstrate the selective absorption of circularly polarised light depending on the orientation of the metasurface. In the nonlinear regime, we demonstrate for the first time how second harmonic …


Phase Gradient Algorithm Method For 3-D Holographic Ladar Imaging, Jason W. Stafford, Bradley D. Duncan, David J. Rabb Jun 2016

Phase Gradient Algorithm Method For 3-D Holographic Ladar Imaging, Jason W. Stafford, Bradley D. Duncan, David J. Rabb

Electro-Optics and Photonics Faculty Publications

3-D holographic ladar uses digital holography with frequency diversity to add the ability to resolve targets in range. A key challenge is that since individual frequency samples are not recorded simultaneously, differential phase aberrations may exist between them making it difficult to achieve range compression. We describe steps specific to this modality so that phase gradient algorithms (PGA) can be applied to 3-D holographic ladar data for phase corrections across multiple temporal frequency samples. Substantial improvement of range compression is demonstrated with a laboratory experiment where our modified PGA technique is applied. Additionally, the PGA estimator is demonstrated to be …


Atomic Force Microscopy Of Poly(Ethylane-Oxide) Crystalization, Xavier Capaldi Jun 2016

Atomic Force Microscopy Of Poly(Ethylane-Oxide) Crystalization, Xavier Capaldi

Honors Theses

Polymer crystallization is a complex process which is influenced by a variety of factors. Atomic force microscopy is used to explore the material properties of polymer crystals. Poly(ethylene-oxide) is used in a variety of molecular weights as the sample. In addition, a variety of sample preparation methods and microscopy modes were tested. A relatively new imaging technique was identified for the characterization of polymer crystals: amplitude modulation-frequency modulation viscoelastic mapping. This mode was used to measure material properties such as stiffness and dissipation.


Particle Image Velocimetry Design & Installation, Zach Ritchie May 2016

Particle Image Velocimetry Design & Installation, Zach Ritchie

Mechanical Engineering Undergraduate Honors Theses

This work will mainly focus on the design, construction, and installation of the Particle Image Velocimetry (PIV) system in the Chemical Hazards Research Center wind tunnel. The PIV system utilizes a Class IV (double pulsed) laser, optics to produce a light sheet, timing circuitry, and a high-resolution camera (with buffered output) to measure a system’s velocity (two-dimensional) field by determining the displacement of particles over the time between laser pulses. For maximum mobility and functionality, the PIV system was installed in the center of the tunnel on a moveable cart with the laser and camera mounted to an adjustable support. …


Procesy Cieplne I Aparaty (Lab), Wojciech M. Budzianowski Jan 2016

Procesy Cieplne I Aparaty (Lab), Wojciech M. Budzianowski

Wojciech Budzianowski

-


Inżynieria Chemiczna Lab., Wojciech M. Budzianowski Jan 2016

Inżynieria Chemiczna Lab., Wojciech M. Budzianowski

Wojciech Budzianowski

-