Open Access. Powered by Scholars. Published by Universities.®

Optics Commons

Open Access. Powered by Scholars. Published by Universities.®

Photonics

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 31

Full-Text Articles in Optics

Novel As-S-Se Compositions Of Solution-Processed Chalcogenide Thin Films For Infrared Optics, Annabella Orsini Apr 2023

Novel As-S-Se Compositions Of Solution-Processed Chalcogenide Thin Films For Infrared Optics, Annabella Orsini

Physics and Astronomy Honors Papers

Chalcogenide glasses (ChGs) have a wide range of interdisciplinary applications. In industry, ChGs are used to vastly improve infrared sight abilities. There are, however, improvements that can be made to the films’ stability, cost, and flexibility. Our project seeks to produce thin films that have these improvements, with capabilities comparable or better than what is widely used in the field. Thin films created through solution-based processes have proven to be much more flexible in comparison to bulk glass versions. Other elements in Group 16, such as Sulfur and Selenium have shown across literature to be a cost-effective alternative to Tellurium …


Investigation Of Laser And Nonlinear Properties Of Anderson Localizing Optical Fibers, Cody Ryan Bassett Nov 2022

Investigation Of Laser And Nonlinear Properties Of Anderson Localizing Optical Fibers, Cody Ryan Bassett

Optical Science and Engineering ETDs

In this dissertation, I investigate the possibility of lasing and nonlinear phenomena in completely solid-state transverse Anderson localizing optical fibers (TALOFs). I examine three areas within this range of topics. The research in nonlinear phenomena focuses on four-wave mixing (FWM). FWM is of high interest in TALOFs due to the fact that guided localized modes of the fiber each have different propagation constants, and thus unique possible FWM pairs can be generated from the same input pump beam. I demonstrate the generation of FWM in the TALOF by pumping it with 532 nm light into a localized mode and observing …


Miniaturized Iii-V/ Si Hybrid Laser With An Integrated Modulator, Praveen Kumar Singaravelu Sep 2022

Miniaturized Iii-V/ Si Hybrid Laser With An Integrated Modulator, Praveen Kumar Singaravelu

Theses

Light interaction with microscopic and nanoscopic structures enable manipulation of its characteristics which can be used to detect objects in 3D sensing, propel satellites to space using photonic propulsion and transmit data through optical communication. For optical communication, the basic components are lasers, modulators and photodetectors. The development of CMOS microfabrication foundries helps to manufacture silicon-based photonic devices with high yield that is directly co-integrated with electronics in a single chip. However, the lack of emission of photons efficiently in silicon propelled the necessity of hybrid photonic devices that inherits the combined advantage of different materials i.e. functionality and volume. …


Study Of Single-Photon Wave-Packets With Atomically Thin Nonlinear Mirrors, Christopher Klenke Aug 2022

Study Of Single-Photon Wave-Packets With Atomically Thin Nonlinear Mirrors, Christopher Klenke

Graduate Theses and Dissertations

A novel controlled phase gate for photonic quantum computing is proposed by exploiting the powerful nonlinear optical responses of atomically thin transition metal dichalcogenides (TMDs) and it is shown that such a gate could elicit a π-rad phase shift in the outgoing electric field only in the case of two incident photons and no other cases. Firstly, the motivation for such a gate is developed and then the implementation of monolayer TMDs is presented as a solution to previous realization challenges. The single-mode case of incident photons upon a TMD is derived and is then used to constrain the more …


Fabricating Nanophotonic Devices Using Nanofabrication Techniques, Scott Cummings Dec 2021

Fabricating Nanophotonic Devices Using Nanofabrication Techniques, Scott Cummings

Student Scholar Symposium Abstracts and Posters

Nanofabrication processes are widely used to make the integrated circuits and computer chips that are ubiquitous in today’s technology. These fabrication processes can also be applied to the creation of nanophotonic devices. The ways in which we apply these fabrication techniques in the field of photonics is often constrained by the technologies used for electronics manufacturing which presents an interesting engineering challenge. These limitations include availability and cost of certain fabrication equipment and techniques required to create state-of-the-art nanophotonic devices. Through work with the University of California Irvine nano-fabrication cleanroom, we designed and fabricated various integrated photonic components including grating …


Topological Classical Wave Systems With Modulations, Interactions, And Higher-Order Topological States, Mengyao Li Sep 2021

Topological Classical Wave Systems With Modulations, Interactions, And Higher-Order Topological States, Mengyao Li

Dissertations, Theses, and Capstone Projects

Topological phases in classical wave systems, such as photonic and acoustic, have been actively investigated and applied for wave guiding, lasing, and numerous other novel phenomena and device applications Topological phase transitions enable robust boundary states, and the field has been broadening recently into a vast variety of systems with temporal modulations and interactions. Floquet modulation, for example, is the modulation applied periodically in time which may break symmetries and leads to novel topological phases.

Introducing non-Hermitian Floquet modulation enables more interesting phenomena including bandgap in imaginary part of the spectrum and gainy/lossy topological edge states with complex energy values. …


Simulation Of Light Propagation Captured By Photoemission Electron Microscopy (Peem), Nabila Islam Jul 2021

Simulation Of Light Propagation Captured By Photoemission Electron Microscopy (Peem), Nabila Islam

Dissertations and Theses

The Photoemission electron microscopes (PEEM) is a powerful tool capable of synchronously imaging wave nature of light manifested by interference patterns as well as its particle nature through the energy exchange between the incident photons and the photoemitted imaging electrons. PEEM offers a non-invasive high-resolution approach for studying light propagation and interaction phenomena within a nanophotonic waveguide [7,8]. The electric field intensity variation of the interference pattern yielded by the interaction between the incident light and the guided mode coupled into the waveguide produces varying photoemission yields creating contrast in PEEM image. The guided modes cannot be excited simply by …


Fabrication And Characterization Of Photodetector Devices Based On Nanostructured Materials: Graphene And Colloidal Nanocrystals, Wafaa Gebril Jul 2021

Fabrication And Characterization Of Photodetector Devices Based On Nanostructured Materials: Graphene And Colloidal Nanocrystals, Wafaa Gebril

Graduate Theses and Dissertations

Photodetectors are devices that capture light signals and convert them into electrical signals. High performance photodetectors are in demand in a variety of applications, such as optical communication, security, and environmental monitoring. Among many appealing nanomaterials for novel photodetection devices, graphene and semiconductor colloidal nanocrystals are promising candidates because of their desirable and unique properties compared to conventional materials.

Photodetector devices based on different types of nanostructured materials including graphene and colloidal nanocrystals were investigated. First, graphene layers were mechanically exfoliated and characterized for device fabrication. Self-powered few layers graphene phototransistors were studied. At zero drain voltage bias and room …


Electrodynamics Modeling Of Plasmonic-Organic Hybrid Waveguides, Marcus Michel Jan 2020

Electrodynamics Modeling Of Plasmonic-Organic Hybrid Waveguides, Marcus Michel

Pomona Senior Theses

Optical fibers have multiple advantages over conventional electrical connections, such as lower energy losses and higher bandwidth. To use optics for chip-to-chip communication, electro-optic (EO) modulators need to be scaled down to be incorporated on integrated circuits. This size reduction has been accomplished using plasmonic-organic hybrid (POH) waveguides, which make use of nonlinear organic EO materials and surface plasmon polaritons to achieve light modulation in devices with lengths on the micron scale. As these devices are just starting to be developed, there are many avenues for their potential optimization. In order to streamline and reduce the cost of the optimization …


Microspheres With Atomic-Scale Tolerances Generate Hyperdegeneracy, Jacob Kher-Alden, Shai Maayani, Leopoldo L. Martin, Mark Douvidzon, Lev Deych, Tal Carmon Jan 2020

Microspheres With Atomic-Scale Tolerances Generate Hyperdegeneracy, Jacob Kher-Alden, Shai Maayani, Leopoldo L. Martin, Mark Douvidzon, Lev Deych, Tal Carmon

Publications and Research

Degeneracies play a crucial rule in precise scientific measurements as well as in sensing applications. Spherical resonators have a high degree of degeneracy thanks to their highest symmetry; yet, fabricating perfect spheres is challenging because even a stem to hold the sphere breaks the symmetry. Here we fabricate a levitating spherical resonator that is evanescently coupled to a standard optical fiber. We characterize the resonators to exhibit an optical quality factor exceeding a billion, 10 μm radius, and sphericity to within less than 1µ. Using our high quality and sphericity, we experimentally lift degeneracies of orders higher than 200, which …


Independent And Simultaneous Control Of Electromagnetic Wave Properties In Self-Collimating Photonic Crystals Using Spatial Variance, Jesus Javier Gutierrez Jan 2020

Independent And Simultaneous Control Of Electromagnetic Wave Properties In Self-Collimating Photonic Crystals Using Spatial Variance, Jesus Javier Gutierrez

Open Access Theses & Dissertations

Photonic crystals are engineered periodic structures that provide great control over electromagnetic waves. One of these mechanisms is self-collimation, in which the electromagnetic wave travels through the photonic crystal along an axis of the lattice without diffracting or spreading. This mechanism of self-collimation is a dispersion phenomenon, which is dependent on the unit cell's physical and geometrical characteristics. An algorithm for generating spatially variant lattices (SVL) was developed that can change geometrical properties in photonic crystals as a function of position, like unit cell orientation, fill fraction, symmetry, and others in a manner that is smooth, continuous, and virtually free …


Slow Light With Interleaved P-N Junction To Enhance Performance Of Integrated Mach-Zehnder Silicon Modulators, Marco Passoni, Dario Gerace, Liam O'Faolain, Lucio Claudio Andreani May 2019

Slow Light With Interleaved P-N Junction To Enhance Performance Of Integrated Mach-Zehnder Silicon Modulators, Marco Passoni, Dario Gerace, Liam O'Faolain, Lucio Claudio Andreani

Cappa Publications

Slow light is a very important concept in nanophotonics, especially in the context of photonic crystals. In this work, we apply our previous design of band-edge slow light in silicon waveguide gratings [M. Passoni et al, Opt. Express 26, 8470 (2018)] to Mach-Zehnder modulators based on the plasma dispersion effect. The key idea is to employ an interleaved p-n junction with the same periodicity as the grating, in order to achieve optimal matching between the electromagnetic field profile and the depletion regions of the p-n junction. The resulting modulation efficiency is strongly improved as compared to common modulators based on …


Quartic Metamaterials: The Inverse Method, Perturbations, And Bulk Optical Neutrality, Thomas Mulkey Apr 2019

Quartic Metamaterials: The Inverse Method, Perturbations, And Bulk Optical Neutrality, Thomas Mulkey

Honors College Theses

A primary goal of photonics is designing material structures that support predetermined electromagnetic field distributions. We have developed an inverse method to determine material parameters for a quartic metamaterial from six desired plane waves. This work inspired us to study how perturbations to the parameters can result in optical neutrality.


Using Fundamental Properties Of Light To Investigate Photonic Effects In Condensed Matter And Biological Tissues, Laura A. Sordillo Jan 2019

Using Fundamental Properties Of Light To Investigate Photonic Effects In Condensed Matter And Biological Tissues, Laura A. Sordillo

Dissertations and Theses

Light possesses characteristics such as polarization, wavelength and coherence. The interaction of light and matter, whether in a semiconductor or in a biological sample, can reveal important information about the internal properties of a system. My thesis focuses on two areas: photocarriers in gallium arsenide and biomedical optics. Varying the excitation wavelength can be used to study both biological tissue and condensed matter. I altered the excitation wavelengths to be in the longer near-infrared (NIR) optical windows, in the shortwave infrared (SWIR) range, a wavelength region previously thought to be unusable for medical imaging. With this method, I acquired high …


Non Linear Optics For Materials Fabrication And Medical Instrumentation, Aurelio Paez Jan 2019

Non Linear Optics For Materials Fabrication And Medical Instrumentation, Aurelio Paez

Open Access Theses & Dissertations

Two-photon absorption is a nonlinear optical process where two photons are absorbed by a molecule simultaneously. The probability of this quantum phenomenon is proportional to the quadratic excitation of light intensity. It has many applications in biomedical and materials research, such as two-photon fluorescence microcopy. The first project is to apply two-photon absorption induced bond cleavage in photoreactive materials for engineering 3D tissue scaffolds. The major challenge for growing thick 3D tissues is the lack of vasculature, where nutrients and oxygen can be delivered to the growing cells. Our collaborators have synthesized a novel polypeptide that is composed of 34-mer …


Effects Of Fabrication Errors On The Focusing Performance Of A Sector Metalens, S. S. Stafeev, A. G. Nalimov, Liam O’Faolain, M. V. Kotlyar Nov 2018

Effects Of Fabrication Errors On The Focusing Performance Of A Sector Metalens, S. S. Stafeev, A. G. Nalimov, Liam O’Faolain, M. V. Kotlyar

Cappa Publications

Using e-beam lithography, a 16-sector spiral metalens was fabricated in an amorphous silicon, capable of converting linearly polarized incident light into an azimuthally polarized optical vortex. When illuminated by a 633-nm linearly polarized laser beam, the metalens generated a near-surface subwavelength focal spot equal to 0.75 of the incident wavelength at full-width of half-maximum intensity. The focusing performance of the spiral metalens was numerically shown to be sensitive to the deviation of the factual microrelief from the calculated height. For the designed microrelief height, a circularly polarized incident beam was focused into a bright ring with a reverse energy flow …


Novel Faraday Rotation Effects Observed In Ultra-Thin Iron Garnet Films, Brandon Blasiola Jan 2018

Novel Faraday Rotation Effects Observed In Ultra-Thin Iron Garnet Films, Brandon Blasiola

Dissertations, Master's Theses and Master's Reports

Recent work performed by A. Chakravarty and M. Levy showed experimentally a dramatic increase in the specific Faraday Rotation (FR) of the iron garnet Bi0.8Lu0.2Gd2Fe5O12. A theoretical model, based purely on classical electrodynamics, attempting to explain this behavior was developed by colleagues in Russia that not only confirmed the asymptotic increase in the specific FR at sub-50nm film thicknesses but also suggested that the specific FR should exhibit significant fluctuations at sub-500 nm film thicknesses. The original data points were widespread with steps of 50 nm or more between data …


Photonic Grating Coupler Designs For Optical Benching, Eng Wen Ong Jan 2018

Photonic Grating Coupler Designs For Optical Benching, Eng Wen Ong

Legacy Theses & Dissertations (2009 - 2024)

Background: Silicon Photonics has been rapidly developing as a field. The primary reason for this is its lower operating costs and faster switching rates for use in big data centres. Instead of microns-wide copper lines to transmit signals, silicon photonic chips use waveguides, usually of silicon or silicon nitride. Photonic signals bypass the issues of resistive-capacitance lag (RC-lag) and resistive-heating encountered by copper lines. Additionally, a single waveguide may transmit multiple signals along different carrier wavelengths.


Optical Forces Generated By Plasmonic Nanostructures, Matthew A. Moocarme Feb 2017

Optical Forces Generated By Plasmonic Nanostructures, Matthew A. Moocarme

Dissertations, Theses, and Capstone Projects

For millennia, scientists have sought to uncover the secrets of what holds the world together. Optical physicists are often at the forefront, unraveling material properties through investigations of light-matter interactions. As the field has progressed, the smallest unit at which matter can be probed and manipulated has subsequently decreased. The resulting sub-field nanophotonics- which reflects the processing of light at the nanoscale- has blossomed into a vast design space for both applied and theoretical researchers. Plasmonics, the phenomena by which the electron-density of a material oscillates in response to incident electromagnetic radiation, is a subject that has excited nanophotonics researchers …


Quantum Inspired Symmetries In Laser Engineering, Mohammad Hosain Teimourpour Jan 2017

Quantum Inspired Symmetries In Laser Engineering, Mohammad Hosain Teimourpour

Dissertations, Master's Theses and Master's Reports

In this thesis, quantum inspired symmetries including Parity-Time (PT) symmetry and Supersymmetry (SUSY) have been studied in the context of non-Hermitian engineered laser systems. This thesis starts with a short review of semiconductor lasers theory in second chapter, followed by an introduction to quantum inspired symmetries: PT symmetry and SUSY in optics and photonics in chapter three.

In chapter four, we have studied the robustness and mode selectivity in PT symmetric lasers. We investigate two important aspects of PT symmetric photonic molecule lasers, namely the robustness of their single longitudinal mode operation against instabilities triggered by spectral hole burning effects, …


Designer Metasurfaces For On Demand Optical Responses, Matthew S. Lepain Jan 2017

Designer Metasurfaces For On Demand Optical Responses, Matthew S. Lepain

Electronic Theses and Dissertations

Nanostructured materials are one of the leading areas in photonics currently. These structures offer almost limitless possibilities in the manipulation of light. Using two different semi-analytical simulation methods, I show a few of the possible properties that these nanostructures possess, including polarization rotation and coupling with electronics.


Photonic Crystals With Alternate Arrays Of Rods And Holes In A Low Dielectric-Index Material, Dimitar L. Dimitrov Sep 2016

Photonic Crystals With Alternate Arrays Of Rods And Holes In A Low Dielectric-Index Material, Dimitar L. Dimitrov

Dissertations, Theses, and Capstone Projects

This thesis theoretically deals with the propagation of electromagnetic waves (light beams) in periodically modulated dielectric material structures based on Maxwell’s equations. We are interested in novel light propagation characteristics in these man-made dielectric material structures for practical applications, especially on optical communications and computations. Since the wavelength range of light is on the same order of magnitude as the modulation periods of dielectric materials, an analogy of the light propagation in dielectric-constant modulated structures with the electron transport in solid-state crystals is used throughout my thesis by using a term “photonic crystals (PhCs)” referring to these dielectric structures. I …


Modification Of The Fundamental Properties Of Light Through Interaction With Nanostructured Materials, David W. Keene Ii Jan 2016

Modification Of The Fundamental Properties Of Light Through Interaction With Nanostructured Materials, David W. Keene Ii

Electronic Theses and Dissertations

The field of photonics has been growing rapidly over the last few decades as it has endeavored to harness the potential of nanostructured materials to utilize the energy and momentum of electromagnetic radiation on the nanoscale. Using metal nanostructures provides the ability to take advantage of the sub-field of plasmonics which holds the promise of opening the world to vast increases in computational power by circumventing the limitations of conventional current that plague today’s processors. With a thorough understanding of this subject we also get one step closer to increasing the efficiency of solar technology, developing a finer scale of …


Multimaterial Fibers In Photonics And Nanotechnology, Guangming Tao Jan 2014

Multimaterial Fibers In Photonics And Nanotechnology, Guangming Tao

Electronic Theses and Dissertations

Recent progress in combing multiple materials with distinct optical, electronic, and thermomechanical properties monolithically in a kilometer-long fiber drawn from a preform offers unique multifunctionality at a low cost. A wide range of unique in-fiber devices have been developed in fiber form-factor using this strategy. Here, I summary my recent results in this nascent field of 'multimaterial fibers'. I will focus on my achievements in producing robust infrared optical fibers and in appropriating optical fiber production technology for applications in nanofabrication. The development of optical components suitable for the infrared (IR) is crucial for applications in this spectral range to …


Novel Gaas-Based Materials For Reconfigurable Electro-Modulated Lasers In Optical Interconnects, Jiri Thoma Jan 2014

Novel Gaas-Based Materials For Reconfigurable Electro-Modulated Lasers In Optical Interconnects, Jiri Thoma

Theses

With the rapid commercialization of personal computers and with the ever increasing desire for faster and larger data transfer, there is a strong need to increase network capacity. One solution is to replace standard metallic connections by optical fibers and full optical technologies. Although such technologies exist and are successfully employed in backbone connections, their complexities hinder a wider utilization toward end customers. Therefore, both manufacturing and operational costs are crucial. Integration of several optical components onto a single device chip is the key element. A simplified integration scheme bringing an additional cost reduction is also welcomed. This thesis presents …


The Impact Of Growth Conditions On Cubic Znmgo Ultraviolet Sensors, Ryan Boutwell Jan 2013

The Impact Of Growth Conditions On Cubic Znmgo Ultraviolet Sensors, Ryan Boutwell

Electronic Theses and Dissertations

Cubic Zn1-xMgxO (c-Zn1-xMgxO) thin films have opened the deep ultraviolet (DUV) spectrum to exploration by oxide optoelectronic devices. These extraordinary films are readily wet-etch-able, have inversion symmetric lattices, and are made of common and safe constituents. They also host a number of new exciting experimental and theoretical challenges. Here, the relation between growth conditions of the c-Zn1-xMgxO film and performance of fabricated ultraviolet (UV) sensors is investigated. Plasma-Enhanced Molecular Beam Epitaxy was used to grow Zn1-xMgxO thin films and formation conditions were explored by varying the growth temperature, Mg source flux, oxygen flow rate, and radio-frequency (RF) power coupled into …


Optically Isotropic Liquid Crystals For Display And Photonic Applications, Jin Yan Jan 2013

Optically Isotropic Liquid Crystals For Display And Photonic Applications, Jin Yan

Electronic Theses and Dissertations

For the past few decades, tremendous progress has been made on liquid crystal display (LCD) technologies in terms of stability, resolution, contrast ratio, and viewing angle. The remaining challenge is response time. The state-of-the-art response time of a nematic liquid crystal is a few milliseconds. Faster response time is desirable in order to reduce motion blur and to realize color sequential display using RGB LEDs, which triples the optical efficiency and resolution density. Polymer-stabilized blue phase liquid crystal (PS-BPLC) is a strong candidate for achieving fast response time because its self-assembled cubic structure greatly reduces the coherence length. The response …


Non-Reciprocal Wave Transmission In Integrated Waveguide Array Isolators, Tony Yatming Ho Jan 2012

Non-Reciprocal Wave Transmission In Integrated Waveguide Array Isolators, Tony Yatming Ho

Electronic Theses and Dissertations

Non-reciprocal wave transmission is a phenomenon witnessed in certain photonic devices when the wave propagation dynamics through the device along one direction differs greatly from the dynamics along the counter-propagating direction. Specifically, it refers to significant power transfer occurring in one direction, and greatly reduced power transfer in the opposite direction. The resulting effect is to isolate the directionality of wave propagation, allowing transmission to occur along one direction only. Given the popularity of photonic integrated circuits (PIC), in which all the optical components are fabricated on the same chip so that the entire optical system can be made more …


Afm-Patterned 2-D Thin-Film Photonic Crystal Analyzed By Complete Angle Scatter, Nicholas C. Herr Mar 2010

Afm-Patterned 2-D Thin-Film Photonic Crystal Analyzed By Complete Angle Scatter, Nicholas C. Herr

Theses and Dissertations

The purpose of this research was to use an atomic force microscope (AFM) to generate a 2-D square array of sub-wavelength surface features from a single material over a region large enough to permit optical characterization. This work is an extension of previous AFIT nano-patterning work and is in response to the small subunit sizes demanded for the production of optical metamaterials and photonic crystals. A diamond nano-indentation AFM probe was used to produce a 325-μm by 200-μm array of indentations in a 120-nm thick polystyrene film deposited on silicon. Indentation spacing of 400 nm produced well-defined surface features with …


Micro-Optic-Spectral-Spatial-Elements (Mosse), Alok Ajay Mehta Jan 2007

Micro-Optic-Spectral-Spatial-Elements (Mosse), Alok Ajay Mehta

Electronic Theses and Dissertations

Over a wide range of applications, optical systems have utilized conventional optics in order to provide the ability to engineer the properties of incident infra-red fields in terms of the transmitted field spectral, spatial, amplitude, phase, and polarization characteristics. These micro/nano-optical elements that provide specific optical functionality can be categorized into subcategories of refractive, diffractive, multi-layer thin film dichroics, 3-D photonic crystals, and polarization gratings. The feasibility of fabrication, functionality, and level of integration which these elements can be used in an optical system differentiate which elements are more compatible with certain systems than others. With enabling technologies emerging allowing …