Open Access. Powered by Scholars. Published by Universities.®

Optics Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Electronics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 319

Full-Text Articles in Optics

Intelligent Millimeter-Wave System For Human Activity Monitoring For Telemedicine, Abdullah K. Alhazmi, Mubarak A. Alanazi, Awwad H. Alshehry, Saleh M. Alshahry, Jennifer Jaszek, Cameron Djukic, Anna Brown, Kurt Jackson, Vamsy P. Chodavarapu Jan 2024

Intelligent Millimeter-Wave System For Human Activity Monitoring For Telemedicine, Abdullah K. Alhazmi, Mubarak A. Alanazi, Awwad H. Alshehry, Saleh M. Alshahry, Jennifer Jaszek, Cameron Djukic, Anna Brown, Kurt Jackson, Vamsy P. Chodavarapu

Electrical and Computer Engineering Faculty Publications

Telemedicine has the potential to improve access and delivery of healthcare to diverse and aging populations. Recent advances in technology allow for remote monitoring of physiological measures such as heart rate, oxygen saturation, blood glucose, and blood pressure. However, the ability to accurately detect falls and monitor physical activity remotely without invading privacy or remembering to wear a costly device remains an ongoing concern. Our proposed system utilizes a millimeter-wave (mmwave) radar sensor (IWR6843ISK-ODS) connected to an NVIDIA Jetson Nano board for continuous monitoring of human activity. We developed a PointNet neural network for real-time human activity monitoring that can …


Method Of Evanescently Coupling Whispering Gallery Mode Optical Resonators Using Liquids, Hengky Chandrahalim, Kyle T. Bodily May 2023

Method Of Evanescently Coupling Whispering Gallery Mode Optical Resonators Using Liquids, Hengky Chandrahalim, Kyle T. Bodily

AFIT Patents

The present invention relates to evanescently coupling whispering gallery mode optical resonators having a liquid coupling as well as methods of making and using same. The aforementioned evanescently coupling whispering gallery mode optical resonators having a liquid couplings provide increased tunability and sensing selectivity over current same. The aforementioned. Applicants’ method of making evanescent-wave coupled optical resonators can be achieved while having coupling gap dimensions that can be fabricated using standard photolithography. Thus economic, rapid, and mass production of coupled WGM resonators-based lasers, sensors, and signal processors for a broad range of applications can be realized.


Sers Platform For Single Fiber Endoscopic Probes, Debsmita Biswas Nov 2022

Sers Platform For Single Fiber Endoscopic Probes, Debsmita Biswas

LSU Doctoral Dissertations

Molecular detection techniques have huge potential in clinical environments. In addition to many other molecular detection techniques, endoscopic Raman spectroscopy has great ability in terms of minimal invasiveness and real-time spectra acquisition. However, Raman Effect is low in sensitivity, limiting the application. Surface-Enhanced Raman Scattering (SERS), addresses this limitation. SERS brings rough nano-metallic surfaces in contact with specimen molecules which enormously enhances Raman signals. This provides Raman spectroscopy with immense capabilities for diverse fields of applications.

Generally, in clinical probe applications, the spectrometer is brought near the target molecules for detection. Typically, optical fibers are used to couple spectrometers to …


Towards A Low-Cost Solution For Gait Analysis Using Millimeter Wave Sensor And Machine Learning, Mubarak A. Alanazi, Abdullah K. Alhazmi, Osama Alsattam, Kara Gnau, Meghan Brown, Shannon Thiel, Kurt Jackson, Vamsy P. Chodavarapu Aug 2022

Towards A Low-Cost Solution For Gait Analysis Using Millimeter Wave Sensor And Machine Learning, Mubarak A. Alanazi, Abdullah K. Alhazmi, Osama Alsattam, Kara Gnau, Meghan Brown, Shannon Thiel, Kurt Jackson, Vamsy P. Chodavarapu

Electrical and Computer Engineering Faculty Publications

Human Activity Recognition (HAR) that includes gait analysis may be useful for various rehabilitation and telemonitoring applications. Current gait analysis methods, such as wearables or cameras, have privacy and operational constraints, especially when used with older adults. Millimeter-Wave (MMW) radar is a promising solution for gait applications because of its low-cost, better privacy, and resilience to ambient light and climate conditions. This paper presents a novel human gait analysis method that combines the micro-Doppler spectrogram and skeletal pose estimation using MMW radar for HAR. In our approach, we used the Texas Instruments IWR6843ISK-ODS MMW radar to obtain the micro-Doppler spectrogram …


Noncontact Liquid Crystalline Broadband Optoacoustic Sensors, Hengky Chandrahalim, Michael T. Dela Cruz Jun 2022

Noncontact Liquid Crystalline Broadband Optoacoustic Sensors, Hengky Chandrahalim, Michael T. Dela Cruz

AFIT Patents

An optoacoustic sensor includes a liquid crystal (LC) cell formed between top and bottom plates of transparent material. A transverse grating formed across the LC cell that forms an optical transmission bandgap. A CL is aligned to form a spring-like, tunable Bragg grating that is naturally responsive to external agitations providing a spectral transition regime, or edge, in the optical transmission bandgap of the transverse grating that respond to broadband acoustic waves. The optoacoustic sensor includes a narrowband light source that is oriented to transmit light through the top plate, the LC cell, and the bottom plate. The optoacoustic sensor …


Imnets: Deep Learning Using An Incremental Modular Network Synthesis Approach For Medical Imaging Applications, Redha A. Ali, Russell C. Hardie, Barath Narayanan Narayanan, Temesguen Messay Jun 2022

Imnets: Deep Learning Using An Incremental Modular Network Synthesis Approach For Medical Imaging Applications, Redha A. Ali, Russell C. Hardie, Barath Narayanan Narayanan, Temesguen Messay

Electrical and Computer Engineering Faculty Publications

Deep learning approaches play a crucial role in computer-aided diagnosis systems to support clinical decision-making. However, developing such automated solutions is challenging due to the limited availability of annotated medical data. In this study, we proposed a novel and computationally efficient deep learning approach to leverage small data for learning generalizable and domain invariant representations in different medical imaging applications such as malaria, diabetic retinopathy, and tuberculosis. We refer to our approach as Incremental Modular Network Synthesis (IMNS), and the resulting CNNs as Incremental Modular Networks (IMNets). Our IMNS approach is to use small network modules that we call SubNets …


Hinged Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Jeremiah C. Williams, Hengky Chandrahalim May 2022

Hinged Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Jeremiah C. Williams, Hengky Chandrahalim

AFIT Patents

A passive microscopic Fabry-Pérot Interferometer (FPI) sensor includes a three-dimensional microscopic optical structure formed on a cleaved tip of the optical fighter using a two-photon polymerization process on a photosensitive polymer by a three-dimensional micromachining device. The three-dimensional microscopic optical structure having a hinged optical layer pivotally connected to a distal portion of a suspended structure. A reflective layer is deposited on a mirror surface of the hinged optical layer while in an open position. The hinged optical layer is subsequently positioned in the closed position to align the mirror surface to at least partially reflect a light signal back …


Resampling And Super-Resolution Of Hexagonally Sampled Images Using Deep Learning, Dylan Flaute, Russell C. Hardie, Hamed Elwarfalli Oct 2021

Resampling And Super-Resolution Of Hexagonally Sampled Images Using Deep Learning, Dylan Flaute, Russell C. Hardie, Hamed Elwarfalli

Electrical and Computer Engineering Faculty Publications

Super-resolution (SR) aims to increase the resolution of imagery. Applications include security, medical imaging, and object recognition. We propose a deep learning-based SR system that takes a hexagonally sampled low-resolution image as an input and generates a rectangularly sampled SR image as an output. For training and testing, we use a realistic observation model that includes optical degradation from diffraction and sensor degradation from detector integration. Our SR approach first uses non-uniform interpolation to partially upsample the observed hexagonal imagery and convert it to a rectangular grid. We then leverage a state-of-the-art convolutional neural network (CNN) architecture designed for SR …


Computational Modeling Of Black Phosphorus Terahertz Photoconductive Antennas Using Comsol Multiphysics With Experimental Comparison Against A Commercial Lt-Gaas Emitter, Jose Isaac Santos Batista Jul 2021

Computational Modeling Of Black Phosphorus Terahertz Photoconductive Antennas Using Comsol Multiphysics With Experimental Comparison Against A Commercial Lt-Gaas Emitter, Jose Isaac Santos Batista

Graduate Theses and Dissertations

This thesis presents computational models of terahertz (THz) photoconductive antenna (PCA) emitter using COMSOL Multiphysics commercial package. A comparison of the computer simulated radiated THz signal against that of an experimentally measured signal of commercial reference LT-GaAs emitter is presented. The two-dimensional model (2D) aimed at calculating the photoconductivity of a black phosphorus (BP) PCA at two laser wavelengths of 780 nm and 1560 nm. The 2D model was applied to the BP PCA emitter and the LT-GaAs devices to compare their simulated performance in terms of the photocurrent and radiated THz signal pulse. The results showed better performance of …


On-Chip Nanoscale Plasmonic Optical Modulators, Abdalrahman Mohamed Nader Abdelhamid Jun 2021

On-Chip Nanoscale Plasmonic Optical Modulators, Abdalrahman Mohamed Nader Abdelhamid

Theses and Dissertations

In this thesis work, techniques for downsizing Optical modulators to nanoscale for the purpose of utilization in on chip communication and sensing applications are explored. Nanoscale optical interconnects can solve the electronics speed limiting transmission lines, in addition to decrease the electronic chips heat dissipation. A major obstacle in the path of achieving this goal is to build optical modulators, which transforms data from the electrical form to the optical form, in a size comparable to the size of the electronics components, while also having low insertion loss, high extinction ratio and bandwidth. Also, lap-on-chip applications used for fast diagnostics, …


Guest Editorial: Edge Intelligence For Beyond 5g Networks, Yan Zhang, Zhiyong Feng, Hassnaa Moustafa, Feng Ye, Usman Javaid, Chunfen Cui Apr 2021

Guest Editorial: Edge Intelligence For Beyond 5g Networks, Yan Zhang, Zhiyong Feng, Hassnaa Moustafa, Feng Ye, Usman Javaid, Chunfen Cui

Electrical and Computer Engineering Faculty Publications

Beyond fifth-generation (B5G) networks, or so-called "6G", is the next-generation wireless communications systems that will radically change how Society evolves. Edge intelligence is emerging as a new concept and has extremely high potential in addressing the new challenges in B5G networks by providing mobile edge computing and edge caching capabilities together with Artificial Intelligence (AI) to the proximity of end users. In edge intelligence empowered B5G networks, edge resources are managed by AI systems for offering powerful computational processing and massive data acquisition locally at edge networks. AI helps to obtain efficient resource scheduling strategies in a complex environment with …


Color-Compressive Bilateral Filter And Nonlocal Means For High-Dimensional Images, Christina Karam, Kenjiro Sugimoto, Keigo Hirakawa Mar 2021

Color-Compressive Bilateral Filter And Nonlocal Means For High-Dimensional Images, Christina Karam, Kenjiro Sugimoto, Keigo Hirakawa

Electrical and Computer Engineering Faculty Publications

We propose accelerated implementations of bilateral filter (BF) and nonlocal means (NLM) called color-compressive bilateral filter (CCBF) and color-compressive nonlocal means (CCNLM). CCBF and CCNLM are random filters, whose Monte-Carlo averaged output images are identical to the output images of conventional BF and NLM, respectively. However, CCBF and CCNLM are considerably faster because the spatial processing of multiple color channels are combined into a single random filtering process. This implies that the complexity of CCBF and CCNLM is less sensitive to color dimension (e.g., hyperspectral images) relatively to other BF and NLM methods. We experimentally verified that the execution time …


Characterization Of Fiber Bragg Grating Based, Geometry-Dependent, Magnetostrictive Composite Sensors, Edward Lynch Dec 2020

Characterization Of Fiber Bragg Grating Based, Geometry-Dependent, Magnetostrictive Composite Sensors, Edward Lynch

Theses and Dissertations

Optical sensors based on geometry dependent magnetostrictive composite, having potential applications in current sensing and magnetic field sensing are modeled and evaluated experimentally with an emphasis on their thermal immunity from thermal disturbances. Two sensor geometries composed of a fiber Bragg grating (FBG) embedded in a shaped Terfenol-D/epoxy composite material, which were previously prototyped and tested for magnetic field response, were investigated. When sensing magnetic fields or currents, the primary function of the magnetostrictive composite geometry is to modulate the magnetic flux such that a magnetostrictive strain gradient is induced on the embedded FBG. Simulations and thermal experiments reveal the …


Structural Organization And Chemical Activity Revealed By New Developments In Single-Molecule Fluorescence And Orientation Imaging, Tianben Ding Aug 2020

Structural Organization And Chemical Activity Revealed By New Developments In Single-Molecule Fluorescence And Orientation Imaging, Tianben Ding

McKelvey School of Engineering Theses & Dissertations

Single-molecule (SM) fluorescence and its localization are important and versatile tools for understanding and quantifying dynamical nanoscale behavior of nanoparticles and biological systems. By actively controlling the concentration of fluorescent molecules and precisely localizing individual single molecules, it is possible to overcome the classical diffraction limit and achieve 'super-resolution' with image resolution on the order of 10 nanometers.

Single molecules also can be considered as nanoscale sensors since their fluorescence changes in response to their local nanoenvironment. This dissertation discusses extending this SM approach to resolve heterogeneity and dynamics of nanoscale materials and biophysical structures by using positions and orientations …


Statistical Photo-Calibration Of Photo-Detectors For Radiometry Without Calibrated Light Sources Comprising An Arithmetic Unit To Determine A Gain And A Bias From Mean Values And Variance Values, Adrian M. Catarius, Nicholas Yielding, Stephen C. Cain, Michael D. Seal Jun 2020

Statistical Photo-Calibration Of Photo-Detectors For Radiometry Without Calibrated Light Sources Comprising An Arithmetic Unit To Determine A Gain And A Bias From Mean Values And Variance Values, Adrian M. Catarius, Nicholas Yielding, Stephen C. Cain, Michael D. Seal

AFIT Patents

Calibration of a radiometry system uses a readout circuit of a photo-detector to provide first and second measurements collected over first and second integration times, respectively, where the first and second measurements are related to a photonic input to the photo-detector by a gain and a bias. First mean and variance values are computed for a plurality of first measurements. Second mean and variance values are computed for a plurality of second measurements. The gain and bias are determined from the first and second mean values and the first and second variance values without the use of a calibrated source. …


Syllabus Ee330 Electromagnetics, Nicholas Madamopoulos Mar 2020

Syllabus Ee330 Electromagnetics, Nicholas Madamopoulos

Open Educational Resources

Concepts covered in the undergraduate electrical engineering class of electromagnetics


Dual-Axis Solar Tracker, Bryan Kennedy Jan 2020

Dual-Axis Solar Tracker, Bryan Kennedy

All Undergraduate Projects

Renewable energies, and fuels that are not fossil fuel-based, are one of the prolific topics of debate in modern society. With climate change now becoming a primary focus for scientists and innovators of today, one of the areas for the largest amount of potential and growth is that of the capturing and utilization of Solar Energy. This method involves using a mechanical system to track the progression of the sun as it traverses the sky throughout the day. A dual-axis solar tracker such as the one designed and built for this project, can follow the sun both azimuthally and in …


Ensemble Lung Segmentation System Using Deep Neural Networks, Redha A. Ali, Russell C. Hardie, Hussin K. Ragb Jan 2020

Ensemble Lung Segmentation System Using Deep Neural Networks, Redha A. Ali, Russell C. Hardie, Hussin K. Ragb

Electrical and Computer Engineering Faculty Publications

Lung segmentation is a significant step in developing computer-aided diagnosis (CAD) using Chest Radiographs (CRs). CRs are used for diagnosis of the 2019 novel coronavirus disease (COVID-19), lung cancer, tuberculosis, and pneumonia. Hence, developing a Computer-Aided Detection (CAD) system would provide a second opinion to help radiologists in the reading process, increase objectivity, and reduce the workload. In this paper, we present the implementation of our ensemble deep learning model for lung segmentation. This model is based on the original DeepLabV3+, which is the extended model of DeepLabV3. Our model utilizes various architectures as a backbone of DeepLabV3+, such as …


Mitosisnet: End-To-End Mitotic Cell Detection By Multi-Task Learning, Md Zahangir Alom, Theus Aspiras, Tarek M. Taha, Tj Bowen, Vijayan K. Asari Jan 2020

Mitosisnet: End-To-End Mitotic Cell Detection By Multi-Task Learning, Md Zahangir Alom, Theus Aspiras, Tarek M. Taha, Tj Bowen, Vijayan K. Asari

Electrical and Computer Engineering Faculty Publications

Mitotic cell detection is one of the challenging problems in the field of computational pathology. Currently, mitotic cell detection and counting are one of the strongest prognostic markers for breast cancer diagnosis. The clinical visual inspection on histology slides is tedious, error prone, and time consuming for the pathologist. Thus, automatic mitotic cell detection approaches are highly demanded in clinical practice. In this paper, we propose an end-to-end multi-task learning system for mitosis detection from pathological images which is named"MitosisNet". MitosisNet consist of segmentation, detection, and classification models where the segmentation, and detection models are used for mitosis reference region …


Polarization Division Multiplexing For Optical Data Communications, Darko Ivanovich Aug 2019

Polarization Division Multiplexing For Optical Data Communications, Darko Ivanovich

McKelvey School of Engineering Theses & Dissertations

Multiple parallel channels are ubiquitous in optical communications, with spatial division multiplexing (separate physical paths) and wavelength division multiplexing (separate optical wavelengths) being the most common forms. In this research work, we investigate the viability of polarization division multiplexing, the separation of distinct parallel optical communication channels through the polarization properties of light. We investigate polarization division multiplexing based optical communication systems in five distinct parts. In the first part of the work, we define a simulation model of two or more linearly polarized optical signals (at different polarization angles) that are transmitted through a common medium (e.g., air), filtered …


A State-Of-The-Art Survey On Deep Learning Theory And Architectures, Md Zahangir Alom, Tarek M. Taha, Christopher Yakopcic, Stefan Westberg, Paheding Sidike, Mst Shamima Nasrin, Mahmudul Hasan, Brian C. Van Essen, Abdul A. S. Awwal, Vijayan K. Asari Mar 2019

A State-Of-The-Art Survey On Deep Learning Theory And Architectures, Md Zahangir Alom, Tarek M. Taha, Christopher Yakopcic, Stefan Westberg, Paheding Sidike, Mst Shamima Nasrin, Mahmudul Hasan, Brian C. Van Essen, Abdul A. S. Awwal, Vijayan K. Asari

Electrical and Computer Engineering Faculty Publications

In recent years, deep learning has garnered tremendous success in a variety of application domains. This new field of machine learning has been growing rapidly and has been applied to most traditional application domains, as well as some new areas that present more opportunities. Different methods have been proposed based on different categories of learning, including supervised, semi-supervised, and un-supervised learning. Experimental results show state-of-the-art performance using deep learning when compared to traditional machine learning approaches in the fields of image processing, computer vision, speech recognition, machine translation, art, medical imaging, medical information processing, robotics and control, bioinformatics, natural language …


Sensing Of Multiple Parameters With Whispering Gallery Mode Optical Fiber Micro-Resonators, Arun Kumar Mallik Dr, Vishnan Kavungal, Gerald Farrell, Yuliya Semenova Jan 2019

Sensing Of Multiple Parameters With Whispering Gallery Mode Optical Fiber Micro-Resonators, Arun Kumar Mallik Dr, Vishnan Kavungal, Gerald Farrell, Yuliya Semenova

Conference Papers

Monitoring of multiple physical parameters, such as humidity, temperature, strain, concentrations of certain chemicals or gases in various environments is of great importance in many industrial applications both for minimizing adverse effects on human health as well as for maintaining production levels and quality of products. In this paper we demonstrate two different approaches to the design of multi-parametric sensors using coupled whispering gallery mode (WGM) optical fiber micro-resonators. In the first approach, a small array of micro-resonators is coupled to a single fiber taper, while in the second approach each of the micro-resonators within an array is coupled to …


Deep Temporal Convolutional Networks For Short-Term Traffic Flow Forecasting, Wentian Zhao, Yanyun Gao, Tingxiang Ji, Xili Wan, Feng Ye, Guangwei Bai Jan 2019

Deep Temporal Convolutional Networks For Short-Term Traffic Flow Forecasting, Wentian Zhao, Yanyun Gao, Tingxiang Ji, Xili Wan, Feng Ye, Guangwei Bai

Electrical and Computer Engineering Faculty Publications

To reduce the increasingly congestion in cities, it is essential for intelligent transportation system (ITS) to accurately forecast the short-term traffic flow to identify the potential congestion sites. In recent years, the emerging deep learning method has been introduced to design traffic flow predictors, such as recurrent neural network (RNN) and long short-term memory (LSTM), which has demonstrated its promising results. In this paper, different from existing work, we study the temporal convolutional network (TCN) and propose a deep learning framework based on TCN model for short-term city-wide traffic forecast to accurately capture the temporal and spatial evolution of traffic …


Recurrent Residual U-Net For Medical Image Segmentation, Md Zahangir Alom, Christopher Yakopcic, Mahmudul Hasan, Tarek M. Taha, Vijayan K. Asari Jan 2019

Recurrent Residual U-Net For Medical Image Segmentation, Md Zahangir Alom, Christopher Yakopcic, Mahmudul Hasan, Tarek M. Taha, Vijayan K. Asari

Electrical and Computer Engineering Faculty Publications

Deep learning (DL)-based semantic segmentation methods have been providing state-of-the-art performance in the past few years. More specifically, these techniques have been successfully applied in medical image classification, segmentation, and detection tasks. One DL technique, U-Net, has become one of the most popular for these applications. We propose a recurrent U-Net model and a recurrent residual U-Net model, which are named RU-Net and R2U-Net, respectively. The proposed models utilize the power of U-Net, residual networks, and recurrent convolutional neural networks. There are several advantages to using these proposed architectures for segmentation tasks. First, a residual unit helps when training deep …


Recursive Non-Local Means Filter For Video Denoising, Redha A. Ali, Russell C. Hardie Dec 2017

Recursive Non-Local Means Filter For Video Denoising, Redha A. Ali, Russell C. Hardie

Electrical and Computer Engineering Faculty Publications

In this paper, we propose a computationally efficient algorithm for video denoising that exploits temporal and spatial redundancy. The proposed method is based on non-local means (NLM). NLM methods have been applied successfully in various image denoising applications. In the single-frame NLM method, each output pixel is formed as a weighted sum of the center pixels of neighboring patches, within a given search window.

The weights are based on the patch intensity vector distances. The process requires computing vector distances for all of the patches in the search window. Direct extension of this method from 2D to 3D, for video …


Real-Time Camera Tracking System Using Optical Flow Feature Points, Daniel D. Doyle, Alan L. Jennings, Jonathan T. Black Jul 2017

Real-Time Camera Tracking System Using Optical Flow Feature Points, Daniel D. Doyle, Alan L. Jennings, Jonathan T. Black

AFIT Patents

A new apparatus and method for tracking a moving object with a moving camera provides a real-time, narrow field-of-view, high resolution and on target image by combining commanded motion with an optical flow algorithm for deriving motion and classifying background. Commanded motion means that movement of the pan, tilt and zoom (PTZ) unit is “commanded” by a computer, instead of being observed by the camera, so that the pan, tilt and zoom parameters are known, as opposed to having to be determined, significantly reducing the computational requirements for tracking a moving object. The present invention provides a single camera pan …


Analysis Of Various Classification Techniques For Computer Aided Detection System Of Pulmonary Nodules In Ct, Barath Narayanan Narayanan, Russell C. Hardie, Temesguen Messay Jun 2017

Analysis Of Various Classification Techniques For Computer Aided Detection System Of Pulmonary Nodules In Ct, Barath Narayanan Narayanan, Russell C. Hardie, Temesguen Messay

Russell C. Hardie

Lung cancer is the leading cause of cancer death in the United States. It usually exhibits its presence with the formation of pulmonary nodules. Nodules are round or oval-shaped growth present in the lung. Computed Tomography (CT) scans are used by radiologists to detect such nodules. Computer Aided Detection (CAD) of such nodules would aid in providing a second opinion to the radiologists and would be of valuable help in lung cancer screening. In this research, we study various feature selection methods for the CAD system framework proposed in FlyerScan. Algorithmic steps of FlyerScan include (i) local contrast enhancement (ii) …


Recursive Non-Local Means Filter For Video Denoising, Redha A. Ali, Russell C. Hardie Jun 2017

Recursive Non-Local Means Filter For Video Denoising, Redha A. Ali, Russell C. Hardie

Russell C. Hardie

In this paper, we propose a computationally efficient algorithm for video denoising that exploits temporal and spatial redundancy. The proposed method is based on non-local means (NLM). NLM methods have been applied successfully in various image denoising applications. In the single-frame NLM method, each output pixel is formed as a weighted sum of the center pixels of neighboring patches, within a given search window. The weights are based on the patch intensity vector distances. The process requires computing vector distances for all of the patches in the search window. Direct extension of this method from 2D to 3D, for video …


Tunable, Room Temperature Thz Emitters Based On Nonlinear Photonics, Raju Sinha Mar 2017

Tunable, Room Temperature Thz Emitters Based On Nonlinear Photonics, Raju Sinha

FIU Electronic Theses and Dissertations

The Terahertz (1012 Hz) region of the electromagnetic spectrum covers the frequency range from roughly 300 GHz to 10 THz, which is in between the microwave and infrared regimes. The increasing interest in the development of ultra-compact, tunable room temperature Terahertz (THz) emitters with wide-range tunability has stimulated in-depth studies of different mechanisms of THz generation in the past decade due to its various potential applications such as biomedical diagnosis, security screening, chemical identification, life sciences and very high speed wireless communication. Despite the tremendous research and development efforts, all the available state-of-the-art THz emitters suffer from either being …


Bragg Gratings In Polarization Maintaining Optical Fiber As Three Dimensional Strain Sensor, Joel Quintana Jan 2017

Bragg Gratings In Polarization Maintaining Optical Fiber As Three Dimensional Strain Sensor, Joel Quintana

Open Access Theses & Dissertations

Fiber-Bragg Gratings (FBG) for Structural Health Monitoring (SHM) have been studied extensively as they offer electrically passive operation, electromagnetic interference (EMI) immunity, high sensitivity and multiplexing as compared to conventional electric strain sensors. FBG sensors written within polarization maintaining (PM) optical fiber offer ad- ditional dimensions of strain measurement, greatly reducing the number of sensors needed to properly monitor a structure. This reduction however, adds complexity to the dis- crimination of the sensorâ??s optical response to its corresponding applied strains. This Dissertation defines the set of algorithms needed to measure planar strain using PM-FBGs exclusively. It defines the minimum number …