Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Elementary Particles and Fields and String Theory

Search For A Dark Leptophilic Scalar Produced In Association With Taupair In Electron-Positron Annihilation At Center-Of-Mass Energies Near 10.58 Gev., Diptaparna Biswas Aug 2022

Search For A Dark Leptophilic Scalar Produced In Association With Taupair In Electron-Positron Annihilation At Center-Of-Mass Energies Near 10.58 Gev., Diptaparna Biswas

Electronic Theses and Dissertations

Dark matter is believed to be a form of matter which seemingly accounts for approximately 85% of the matter in the universe and about 27% of its total mass–energy density. It doesn't participate in electromagnetic interaction, i.e. doesn't interact with light. Consequently, we cannot see it using optical or radio telescope and hence the name dark matter. However, it participates in gravitational interaction, and we hypothesize its existence based on a variety of astrophysical observations, including gravitational effects, that cannot be explained by the accepted theories of gravity unless we account for more matter than can be perceived through electromagnetic …


Study Of Neutral Hadron Production In A High Intensity Particle Physics Experiment., Jake W. Berg May 2021

Study Of Neutral Hadron Production In A High Intensity Particle Physics Experiment., Jake W. Berg

Electronic Theses and Dissertations

In this dissertation I present independent measurements of the multiplicities, R, of π0 and η mesons produced in annihilation interactions of electrons and positrons at a center-of-mass energy of 10.54 GeV. Data were collected using the BaBar detector at the PEP-II storage rings located at the SLAC National Accelerator Laboratory in Menlo Park, California. Both mesons have a decay mode to two photons, which is used to identify them and measure their production per event. I find R0) = 2.8±0.3 per event and R(η) = 0.25±0.03 per event. I also present my contributions to …


Search For New Physics Using Lepton Flavor Violating Signatures In Modern Particle Colliders., Atanu Pathak Aug 2020

Search For New Physics Using Lepton Flavor Violating Signatures In Modern Particle Colliders., Atanu Pathak

Electronic Theses and Dissertations

Charged lepton flavor violation is a clear signal of new physics. Such decays are not allowed in the Standard Model but highly anticipated in a large class of new physics models. A direct search for lepton flavor violation in decays of the Higgs boson with the ATLAS detector at the LHC is presented here. The analysis is performed in the H → l tau channel, where the leading lepton (l) can be either an electron or a muon, and the tau lepton decays into an opposite flavored lighter lepton or via the hadronic decay channel. Published results of this search …


A Study On Radiative Pion Capture As A Source Of Background In The Search For Muon To Electron Conversion At The Mu2e Experiment., Joseph Leibson May 2019

A Study On Radiative Pion Capture As A Source Of Background In The Search For Muon To Electron Conversion At The Mu2e Experiment., Joseph Leibson

Electronic Theses and Dissertations

The following thesis will cover the process of radiative pion capture in the Mu2e experiment at Fermi National Accelerator Laboratory. Radiative pion capture (RPC) is a process that is able to mimic the signal of an electron spawned from the neutrino-less conversion of a muon. In this paper we will discuss the current Standard Model accepted by physicists, and discuss charged lepton flavor violation, which is the motivation behind Mu2e. This paper will cover the theory behind Mu2e and RPC, as well as the apparatus involved in the Mu2e experiment. Next, software and simulations used to carry out the RPC …


The Beam Dynamics And Beam Related Uncertainties In Fermilab Muon G-2 Experiment, Wanwei Wu Jan 2018

The Beam Dynamics And Beam Related Uncertainties In Fermilab Muon G-2 Experiment, Wanwei Wu

Electronic Theses and Dissertations

The anomaly of the muon magnetic moment, aμ ≡ (g-2)/2, has played an important role in constraining physics beyond the Standard Model for many years. Currently, the Standard Model prediction for aμ is accurate to 0.42 parts per million (ppm). The most recent muon g-2 experiment was done at Brookhaven National Laboratory (BNL) and determined aμ to 0.54 ppm, with a central value that differs from the Standard Model prediction by 3.3-3.6 standard deviations and provides a strong hint of new physics. The Fermilab Muon g-2 Experiment has a goal to measure aμ to unprecedented precision: 0.14 ppm, which could …


Final Muon Cooling For A Muon Collider, John Gabriel Acosta Castillo Jan 2017

Final Muon Cooling For A Muon Collider, John Gabriel Acosta Castillo

Electronic Theses and Dissertations

To explore the new energy frontier, a new generation of particle accelerators is needed. Muon colliders are a promising alternative if muon cooling can be made to work. Muons are 200 times heavier than electrons, so they produce less synchrotron radiation, and they behave like point particles. However, they have a short lifetime of 2.2 μs and the beam is more difficult to cool than an electron beam. The Muon Accelerator Program (MAP) was created to develop concepts and technologies required by a muon collider. An important effort has been made in the program to design and optimize a muon …


Design Of A High Luminosity 100 Tev Proton Antiproton Collider, Sandra Jimena Oliveros Tautiva Jan 2017

Design Of A High Luminosity 100 Tev Proton Antiproton Collider, Sandra Jimena Oliveros Tautiva

Electronic Theses and Dissertations

Currently new physics is being explored with the Large Hadron Collider at CERN and with Intensity Frontier programs at Fermilab and KEK. The energy scale for new physics is known to be in the multi-TeV range, signaling the need for a future collider which well surpasses this energy scale. A 10 34 cm-2 s-1 luminosity 100 TeV proton-antiproton collider is explored with 7× the energy of the LHC. The dipoles are 4.5 T to reduce cost. A proton-antiproton collider is selected as a future machine for several reasons. The cross section for many high mass states is 10 times higher …


A Study Of The Radiative Pion Capture Process As A Background To The Search For Muon To Electron Conversion With The Mu2e Experiment., Jacob Colston Aug 2016

A Study Of The Radiative Pion Capture Process As A Background To The Search For Muon To Electron Conversion With The Mu2e Experiment., Jacob Colston

Electronic Theses and Dissertations

This thesis will introduce radiative pion capture (RPC), a process which can produce a fake signal in a search for the coherent conversion of a muon to an electron in the presence of a nucleus. There will be a brief introduction to standard model (SM) physics, as well as some more in-depth discussion of the relevant high energy physics at the Mu2e experiment. We will discuss charged lepton flavor violation (CLFV), as well as Supersymmetry, which predicts CLFV at higher intensities than the SM prediction. A description of the RPC process follows, including the external and internal conversions in pion …


Identification Of High Energy Cosmic Ray Electrons Using Advanced Techniques In Calet And Fermi Lat, Aaron James Worley Jan 2015

Identification Of High Energy Cosmic Ray Electrons Using Advanced Techniques In Calet And Fermi Lat, Aaron James Worley

Electronic Theses and Dissertations

Measurements of the cosmic ray electron spectrum have received much attention over the last decade as anomalies in both electron and positron observations have been detected independently by several experiments. The profound possible implications in the fields of high energy astrophysics and particle physics have allowed for many interpretations on the origin of these inconsistencies in the spectra. This research focuses on two space-borne cosmic radiation experiments at different stages in their mission lifetimes: the Calorimetric Electron Telescope (CALET) and the Fermi Large Area Telescope (LAT). We explore the proton-electron discriminating capabilities of the CALET instrument through Monte Carlo simulations. …


Probing New Physics Through Third Generation Leptons, Preet Sharma Jan 2014

Probing New Physics Through Third Generation Leptons, Preet Sharma

Electronic Theses and Dissertations

This dissertation is a study of beyond standard model physics or new physics. The third generation charged lepton -the τ -is an excellent probe of new physics (NP) because of it being the heaviest lepton. As the heaviest lepton, it has the largest coupling ( among the leptons) to the Higgs boson in the Standard Model (SM). New physics contributions to the tau-neutrino nucleon scattering were considered. Charged Higgs and W' effects to the deep inelastic scattering ντ ( [special character omitted]τ) + N → τ− (τ+) + X in the neutrino-nucleon interactions has been studied. The neutrino detection process …


On The Stochastic Behavior Of Brownian Particles In Potential Wells, As Observed With Optical Traps, Ross Paul Brody Jan 2008

On The Stochastic Behavior Of Brownian Particles In Potential Wells, As Observed With Optical Traps, Ross Paul Brody

Electronic Theses and Dissertations

When the random fluctuations of a system are viewed as energetic fluctuations, many of the unique qualities of the system become irrelevant to the fundamental behavior. Consequently, many stochastic processes are fundamentally identical and are treated mathematically as such. For this reason the study of colloidal particles in aqueous solution has been invaluable to investigations of biologically relevant stochastic processes. This work addresses the motion of a Brownian particle, in a potential well, whose random fluctuations are described by a Gaussian-Markov random variable. By performing optical trapping experiments on micron sized, non-interacting, latex spheres in aqueous solution we have shown …