Open Access. Powered by Scholars. Published by Universities.®

Geometry and Topology

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 29 of 29

Full-Text Articles in Elementary Particles and Fields and String Theory

Classification Of Topological Defects In Cosmological Models, Abigail Swanson Apr 2024

Classification Of Topological Defects In Cosmological Models, Abigail Swanson

Student Research Submissions

In nature, symmetries play an extremely significant role. Understanding the symmetries of a system can tell us important information and help us make predictions. However, these symmetries can break and form a new type of symmetry in the system. Most notably, this occurs when the system goes through a phase transition. Sometimes, a symmetry can break and produce a tear, known as a topological defect, in the system. These defects cannot be removed through a continuous transformation and can have major consequences on the system as a whole. It is helpful to know what type of defect is produced when …


Conventions, Definitions, Identities, And Other Useful Formulae, Robert A. Mcnees Iv Jan 2024

Conventions, Definitions, Identities, And Other Useful Formulae, Robert A. Mcnees Iv

Physics: Faculty Publications and Other Works

As the name suggests, these notes contain a summary of important conventions, definitions, identities, and various formulas that I often refer to. They may prove useful for researchers working in General Relativity, Supergravity, String Theory, Cosmology, and related areas.


Geometry And Semiclassics Of Tetrahedral Grain Of Space, Santanu B. Antu Jan 2023

Geometry And Semiclassics Of Tetrahedral Grain Of Space, Santanu B. Antu

Senior Projects Spring 2023

The quantum theory of gravity has eluded physicists for many decades. The apparent contradiction between the physics describing the microscopic and the macroscopic regimes has given rise to some beautiful theories and mathematics. In this paper, we discuss some aspects of one of those theories, namely loop quantum gravity (LQG). Specifically, we discuss the discreteness of spacetime, a feature that distinguishes LQG from some of the other contending theories. After a general discussion in the introduction, we discuss the dynamics and quantization of the simplices (tetrahedra) that make up the space. The discrete geometry of these tetrahedral grains of space …


General Covariance With Stacks And The Batalin-Vilkovisky Formalism, Filip Dul Jun 2022

General Covariance With Stacks And The Batalin-Vilkovisky Formalism, Filip Dul

Doctoral Dissertations

In this thesis we develop a formulation of general covariance, an essential property for many field theories on curved spacetimes, using the language of stacks and the Batalin-Vilkovisky formalism. We survey the theory of stacks, both from a global and formal perspective, and consider the key example in our work: the moduli stack of metrics modulo diffeomorphism. This is then coupled to the Batalin-Vilkovisky formalism–a formulation of field theory motivated by developments in derived geometry–to describe the associated equivariant observables of a theory and to recover and generalize results regarding current conservation.


Introduction To Classical Field Theory, Charles G. Torre Jun 2022

Introduction To Classical Field Theory, Charles G. Torre

All Complete Monographs

This is an introduction to classical field theory. Topics treated include: Klein-Gordon field, electromagnetic field, scalar electrodynamics, Dirac field, Yang-Mills field, gravitational field, Noether theorems relating symmetries and conservation laws, spontaneous symmetry breaking, Lagrangian and Hamiltonian formalisms.


Finite Dimensional Approximation And Pin(2)-Equivariant Property For Rarita-Schwinger-Seiberg-Witten Equations, Minh Lam Nguyen May 2022

Finite Dimensional Approximation And Pin(2)-Equivariant Property For Rarita-Schwinger-Seiberg-Witten Equations, Minh Lam Nguyen

Graduate Theses and Dissertations

The Rarita-Schwinger operator Q was initially proposed in the 1941 paper by Rarita and Schwinger to study wave functions of particles of spin 3/2, and there is a vast amount of physics literature on its properties. Roughly speaking, 3/2−spinors are spinor-valued 1-forms that also happen to be in the kernel of the Clifford multiplication. Let X be a simply connected Riemannian spin 4−manifold. Associated to a fixed spin structure on X, we define a Seiberg-Witten-like system of non-linear PDEs using Q and the Hodge-Dirac operator d∗ + d+ after suitable gauge-fixing. The moduli space of solutions M contains (3/2-spinors, purely …


A New Non-Inheriting Homogeneous Solution Of The Einstein-Maxwell Equations With Cosmological Term, Charles G. Torre Jan 2022

A New Non-Inheriting Homogeneous Solution Of The Einstein-Maxwell Equations With Cosmological Term, Charles G. Torre

Research Vignettes

No abstract provided.


The Differentialgeometry Package, Ian M. Anderson, Charles G. Torre Jan 2022

The Differentialgeometry Package, Ian M. Anderson, Charles G. Torre

Downloads

This is the entire DifferentialGeometry package, a zip file (DifferentialGeometry.zip) containing (1) a Maple Library file, DifferentialGeometryUSU.mla, (2) a Maple help file DifferentialGeometry.help, (3) a Maple Library file, DGApplicatons.mla. This is the latest version of the DifferentialGeometry software; it supersedes what is released with Maple.

Installation instructions


Extractable Entanglement From A Euclidean Hourglass, Takanori Anegawa, Norihiro Iizuka, Daniel Kabat Jan 2022

Extractable Entanglement From A Euclidean Hourglass, Takanori Anegawa, Norihiro Iizuka, Daniel Kabat

Publications and Research

We previously proposed that entanglement across a planar surface can be obtained from the partition function on a Euclidean hourglass geometry. Here we extend the prescription to spherical entangling surfaces in conformal field theory. We use the prescription to evaluate log terms in the entropy of a conformal field theory in two dimensions, a conformally coupled scalar in four dimensions, and a Maxwell field in four dimensions. For Maxwell we reproduce the extractable entropy obtained by Soni and Trivedi. We take this as evidence that the hourglass prescription provides a Euclidean technique for evaluating extractable entropy in quantum field theory.


Geometrization Of Hawking Radiation Via Ricci Flow, Alexander Cassem Apr 2021

Geometrization Of Hawking Radiation Via Ricci Flow, Alexander Cassem

Ramaley Celebration

In 1982, Richard S. Hamilton formulated Ricci flow along manifolds of three dimensions of positive Ricci curvature as an attempt to resolve Poincaré’s Conjecture. However, it took until 2006 by Grigori Perelman to resolve the conjecture with Ricci flow. Since then, research in pure mathematics on Ricci Flow increased exponentially, and people began to apply it towards physics. For example, Ricci flow has been found to be the Renormalization Group flow of the bosonic string and sigma model. However, Ricci flow’s analogous counterpart being the heat equation, makes it appear to have more applications. For this reason, we have studied …


Graded Quivers, Generalized Dimer Models And Toric Geometry, Sebastián Franco, Azeem Hasan Nov 2019

Graded Quivers, Generalized Dimer Models And Toric Geometry, Sebastián Franco, Azeem Hasan

Publications and Research

The open string sector of the topological B-model on CY (m+2)-folds is described by m-graded quivers with superpotentials. This correspondence extends to general m the well known connection between CY (m+2)-folds and gauge theories on the world-volume of D(5-2m)-branes for m = 0, ..., 3. We introduce m-dimers, which fully encode the m-graded quivers and their superpotentials, in the case in which the CY (m+2)-folds are toric. Generalizing the well known m = 1,2 cases, m-dimers significantly simplify the connection between geometry and m-graded quivers. A key …


Spacetime Groups, Ian M. Anderson, Charles G. Torre Jan 2019

Spacetime Groups, Ian M. Anderson, Charles G. Torre

Publications

A spacetime group is a connected 4-dimensional Lie group G endowed with a left invariant Lorentz metric h and such that the connected component of the isometry group of h is G itself. The Newman-Penrose formalism is used to give an algebraic classification of spacetime groups, that is, we determine a complete list of inequivalent spacetime Lie algebras, which are pairs (g,η), with g being a 4-dimensional Lie algebra and η being a Lorentzian inner product on g. A full analysis of the equivalence problem for spacetime Lie algebras is given which leads to a completely algorithmic solution to the …


Higher Cluster Categories And Qft Dualities, Sebastián Franco, Gregg Musiker Jan 2018

Higher Cluster Categories And Qft Dualities, Sebastián Franco, Gregg Musiker

Publications and Research

We introduce a unified mathematical framework that elegantly describes minimally supersymmetry gauge theories in even dimensions, ranging from six dimensions to zero dimensions, and their dualities. This approach combines and extends recent developments on graded quivers with potentials, higher Ginzburg algebras, and higher cluster categories (also known as m-cluster categories). Quiver mutations studied in the context of mathematics precisely correspond to the order-(m + 1) dualities of the gauge theories. Our work indicates that these equivalences of quiver gauge theories sit inside an infinite family of such generalized dualities.


Introduction To The Usu Library Of Solutions To The Einstein Field Equations, Ian M. Anderson, Charles G. Torre Dec 2017

Introduction To The Usu Library Of Solutions To The Einstein Field Equations, Ian M. Anderson, Charles G. Torre

Tutorials on... in 1 hour or less

This is a Maple worksheet providing an introduction to the USU Library of Solutions to the Einstein Field Equations. The library is part of the DifferentialGeometry software project and is a collection of symbolic data and metadata describing solutions to the Einstein equations.


Some 2-Categorical Aspects In Physics, Arthur Parzygnat Sep 2016

Some 2-Categorical Aspects In Physics, Arthur Parzygnat

Dissertations, Theses, and Capstone Projects

2-categories provide a useful transition point between ordinary category theory and infinity-category theory where one can perform concrete computations for applications in physics and at the same time provide rigorous formalism for mathematical structures appearing in physics. We survey three such broad instances. First, we describe two-dimensional algebra as a means of constructing non-abelian parallel transport along surfaces which can be used to describe strings charged under non-abelian gauge groups in string theory. Second, we formalize the notion of convex and cone categories, provide a preliminary categorical definition of entropy, and exhibit several examples. Thirdly, we provide a universal description …


Conventions, Definitions, Identities, And Other Useful Formulae, Robert Mcnees Jan 2016

Conventions, Definitions, Identities, And Other Useful Formulae, Robert Mcnees

Robert A McNees IV

As the name suggests, these notes contain a summary of important conventions, definitions, identities, and various formulas that I often refer to. They may prove useful for researchers working in General Relativity, Supergravity, String Theory, Cosmology, and related areas.


Geometrization Conditions For Perfect Fluids, Scalar Fields, And Electromagnetic Fields, Charles G. Torre, Dionisios Krongos Jul 2015

Geometrization Conditions For Perfect Fluids, Scalar Fields, And Electromagnetic Fields, Charles G. Torre, Dionisios Krongos

Charles G. Torre

Rainich-type conditions giving a spacetime “geometrization” of matter fields in general relativity are reviewed and extended. Three types of matter are considered: perfect fluids, scalar fields, and electromagnetic fields. Necessary and sufficient conditions on a spacetime metric for it to be part of a perfect fluid solution of the Einstein equations are given. Formulas for constructing the fluid from the metric are obtained. All fluid results hold for any spacetime dimension. Geometric conditions on a metric which are necessary and sufficient for it to define a solution of the Einstein-scalar field equations and formulas for constructing the scalar field from …


Geometrization Conditions For Perfect Fluids, Scalar Fields, And Electromagnetic Fields, Charles G. Torre, Dionisios Krongos Mar 2015

Geometrization Conditions For Perfect Fluids, Scalar Fields, And Electromagnetic Fields, Charles G. Torre, Dionisios Krongos

Presentations and Publications

Rainich-type conditions giving a spacetime “geometrization” of matter fields in general relativity are reviewed and extended. Three types of matter are considered: perfect fluids, scalar fields, and elec- tromagnetic fields. Necessary and sufficient conditions on a spacetime metric for it to be part of a perfect fluid solution of the Einstein equa- tions are given. Formulas for constructing the fluid from the metric are obtained. All fluid results hold for any spacetime dimension. Ge- ometric conditions on a metric which are necessary and sufficient for it to define a solution of the Einstein-scalar field equations and for- mulas for constructing …


Scattering Amplitudes In Flat Space And Anti-De Sitter Space, Savan Kharel Dec 2014

Scattering Amplitudes In Flat Space And Anti-De Sitter Space, Savan Kharel

Doctoral Dissertations

We calculate gauge theory one-loop amplitudes with the aid of the complex shift used in the Britto- Cachazo-Feng-Witten (BCFW) recursion relations of tree amplitudes. We apply the shift to the integrand and show that the contribution from the limit of infinite shift vanishes after integrating over the loop momentum, with a judicious choice of basis for polarization vectors. This enables us to write the one-loop amplitude in terms of on-shell tree and lower-point one-loop amplitudes. Some of the tree amplitudes are forward amplitudes. We show that their potential singularities do not contribute and the BCFW recursion relations can be applied …


Perihelion Precession In General Relativity, Charles G. Torre Apr 2014

Perihelion Precession In General Relativity, Charles G. Torre

Charles G. Torre

This is a Maple worksheet providing a relatively quick and informal sketch of a demonstration that general relativistic corrections to the bound Kepler orbits introduce a perihelion precession. Any decent textbook will derive this result. My analysis aligns with that found in the old text "Introduction to General Relativity", by Adler, Bazin and Schiffer. The plan of the analysis is as follows. * Model the planetary orbits as geodesics in the (exterior) Schwarzschild spacetime. * Compute the geodesic equations. * Simplify them using symmetries and first integrals. * Isolate the differential equation expressing the radial coordinate as a function of …


The Spacetime Geometry Of A Null Electromagnetic Field, Charles G. Torre Feb 2014

The Spacetime Geometry Of A Null Electromagnetic Field, Charles G. Torre

Charles G. Torre

We give a set of local geometric conditions on a spacetime metric which are necessary and sufficient for it to be a null electrovacuum, that is, the metric is part of a solution to the Einstein-Maxwell equations with a null electromagnetic field. These conditions are restrictions on a null congruence canonically constructed from the spacetime metric, and can involve up to five derivatives of the metric. The null electrovacuum conditions are counterparts of the Rainich conditions, which geometrically characterize non-null electrovacua. Given a spacetime satisfying the conditions for a null electrovacuum, a straightforward procedure builds the null electromagnetic field from …


Rainich-Type Conditions For Null Electrovacuum Spacetimes Ii, Charles G. Torre Oct 2013

Rainich-Type Conditions For Null Electrovacuum Spacetimes Ii, Charles G. Torre

Research Vignettes

In this second of two worksheets I continue describing local Rainich-type conditions which are necessary and sufficient for the metric to define a null electrovacuum. In other words, these conditions, which I will call the null electrovacuum conditions, guarantee the existence of a null electromagnetic field such that the metric and electromagnetic field satisfy the Einstein-Maxwell equations. When it exists, the electromagnetic field is easily constructed from the metric. In this worksheet I consider the null electrovacuum conditions which apply when a certain null geodesic congruence determined by the metric is twisting. I shall illustrate the these conditions using a …


The Spacetime Geometry Of A Null Electromagnetic Field, Charles G. Torre Jul 2013

The Spacetime Geometry Of A Null Electromagnetic Field, Charles G. Torre

Presentations and Publications

We give a set of local geometric conditions on a spacetime metric which are necessary and sufficient for it to be a null electrovacuum, that is, the metric is part of a solution to the Einstein-Maxwell equations with a null electromagnetic field. These conditions are restrictions on a null congruence canonically constructed from the spacetime metric, and can involve up to five derivatives of the metric. The null electrovacuum conditions are counterparts of the Rainich conditions, which geometrically characterize non-null electrovacua. Given a spacetime satisfying the conditions for a null electrovacuum, a straightforward procedure builds the null electromagnetic field from …


How To Find Killing Vectors, Charles G. Torre Mar 2013

How To Find Killing Vectors, Charles G. Torre

How to... in 10 minutes or less

We show how to compute the Lie algebra of Killing vector fields of a metric in Maple using the commands KillingVectors and LieAlgebraData. A Maple worksheet and a PDF version can be found below.


A Homogeneous Solution Of The Einstein-Maxwell Equations, Charles G. Torre Jul 2012

A Homogeneous Solution Of The Einstein-Maxwell Equations, Charles G. Torre

Research Vignettes

We exhibit and analyze a homogeneous spacetime whose source is a pure radiation electromagnetic field [1]. It was previously believed that this spacetime is the sole example of a homogeneous pure radiation solution of the Einstein equations which admits no electromagnetic field (see [2] and references therein). Here we correct this error in the literature by explicitly displaying the electromagnetic source. This result implies that all homogeneous pure radiation spacetimes satisfy the Einstein-Maxwell equations.

PDF and Maple worksheets can be downloaded from the links below.


How To Create A Lie Algebra, Ian M. Anderson Jul 2012

How To Create A Lie Algebra, Ian M. Anderson

How to... in 10 minutes or less

We show how to create a Lie algebra in Maple using three of the most common approaches: matrices, vector fields and structure equations. PDF and Maple worksheets can be downloaded from the links below.


Introduction Aux Méthodes D’Intégrale De Chemin Et Applications, Nour-Eddiine Fahssi Jan 2012

Introduction Aux Méthodes D’Intégrale De Chemin Et Applications, Nour-Eddiine Fahssi

Nour-Eddine Fahssi

These lecture notes are based on a master course given at University Hassan II - Agdal in spring 2012.


Complex Multiplication Symmetry Of Black Hole Attractors, Monika Lynker, Vipul Periwal, Rolf Schimmrigk Sep 2003

Complex Multiplication Symmetry Of Black Hole Attractors, Monika Lynker, Vipul Periwal, Rolf Schimmrigk

Faculty and Research Publications

We show how Moore’s observation, in the context of toroidal compactifications in type IIB string theory, concerning the complex multiplication structure of black hole attractor varieties, can be generalized to Calabi-Yau compactifications with finite fundamental groups. This generalization leads to an alternative general framework in terms of motives associated to a Calabi-Yau variety in which it is possible to address the arithmetic nature of the attractor varieties in a universal way via Deligne’s period conjecture.


Topology And Metastability In The Lattice Skyrme Model, Alec Schramm, Benjamin Svetitsky Nov 2000

Topology And Metastability In The Lattice Skyrme Model, Alec Schramm, Benjamin Svetitsky

Alec J Schramm

We offer the Skyrme model on a lattice as an effective field theory—fully quantized—of baryon-meson interactions at temperatures below the chiral phase transition. We define a local topological density that involves the volumes of tetrahedra in the target space S3 and we make use of Coxeter’s formula for the Schläfli function to implement it. This permits us to calculate the mean-square radius of a Skyrmion in the three-dimensional lattice Skyrme model, which may be viewed as a Ginzburg-Landau effective theory for the full quantum theory at finite temperature. We find that, contrary to expectations, the Skyrmion shrinks as quantum and …