Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Condensed Matter Physics

Origin Of The 〈11/20〉 Atomic Short-Range Order In Au-Rich Au-Fe Alloys, M. F. Ling, J. B. Staunton, Duane D. Johnson, F. J. Pinski Aug 1995

Origin Of The 〈11/20〉 Atomic Short-Range Order In Au-Rich Au-Fe Alloys, M. F. Ling, J. B. Staunton, Duane D. Johnson, F. J. Pinski

Duane D. Johnson

We have calculated the atomic short-range order (ASRO) and paramagnetic susceptibility in high-temperature, chemically disordered Au75Fe25 and Au90Fe10, using a density-functional-based, electronic-structure method. For both alloys, we obtain 〈11/20〉-type ASRO, in excellent agreement with experiments performed on samples that have been fast quenched from high temperature. We also identify the underlying electronic mechanism responsible for this unusual ordering behavior. During annealing at high temperatures, we suggest that aligning local moments via an external magnetic field will produce interesting AuFe alloys with 〈100〉-type ASRO.


Van Hove Singularity Induced L11 Ordering In Cupt, J. F. Clark, F. J. Pinski, Duane D. Johnson, P. A. Sterne, J. B. Staunton, B. Ginatempo Apr 1995

Van Hove Singularity Induced L11 Ordering In Cupt, J. F. Clark, F. J. Pinski, Duane D. Johnson, P. A. Sterne, J. B. Staunton, B. Ginatempo

Duane D. Johnson

We describe an ordering mechanism that arises due to coupling between electronic states at van Hove singularities. This novel mechanism, which naturally leads to ordered structures with small unit cells, couples states near the Fermi energy which are localized at high-symmetry points in k space, in contrast to the conventional mechanism which relies on large parallel sheets of Fermi surface. Using first-principles calculations of the electronic structure of ordered and disordered alloys, we show that this mechanism drives the unusual short- and long-range order found in fcc CuPt.


Local Non-Equilibrium Model For Rapid Solidification Of Undercooled Melts, Sergey Sobolev Jan 1995

Local Non-Equilibrium Model For Rapid Solidification Of Undercooled Melts, Sergey Sobolev

Sergey Sobolev

No abstract provided.


Commensurate And Incommensurate Ordering Tendencies In The Ternary Fcc Cu-Ni-Zn System, J. D. Althoff, Duane D. Johnson, F. J. Pinski Jan 1995

Commensurate And Incommensurate Ordering Tendencies In The Ternary Fcc Cu-Ni-Zn System, J. D. Althoff, Duane D. Johnson, F. J. Pinski

Duane D. Johnson

We show that Fermi-surface (FS) nesting drives both the incommensurate and commensurate ordering tendencies of the fcc ternary Cu-Ni-Zn system. Surprisingly, commensurate order persists over a wide range of composition, despite its origins. For Cu2NiZn, we discuss how FS nesting and the other effects of alloying lead to ordering tendencies consistent with the experimentally observed order-disorder transformations. All calculations are based on a first-principles theory of the atomic short-range order in alloys with an arbitrary number of components.


Characterization Of Piezoceramic Crosses With Large Range Scanning Capability And Applications For Low Temperature Scanning Tunneling Microscopy, J. A. Helfrich, Shireen Adenwalla, J. B. Ketterson, G. A. Zhitomirsky Jan 1995

Characterization Of Piezoceramic Crosses With Large Range Scanning Capability And Applications For Low Temperature Scanning Tunneling Microscopy, J. A. Helfrich, Shireen Adenwalla, J. B. Ketterson, G. A. Zhitomirsky

Shireen Adenwalla Papers

We have developed a large amplitude piezoceramic scanner which should have numerous applications. Scanning tunneling microscopy (STM) and other scanning probe microscopies predominantly use piezoceramics for the scanning elements. Similarly adaptive optics, high resolution lithography, and micromanipulators are other examples of research which regularly utilize piezoceramic scanners. We present a new geometry for a piezoceramic scanner which allows for both high resolution (~nanometers) and large amplitude (~400 µm) displacements. The cross-shaped geometry makes it possible to produce extremely long pieces with very high tolerances. We have shown its effectiveness by using it as the major component of a low temperature …


Compensation And Characterization Of Gallium Arsenide, Randy A. Roush Jan 1995

Compensation And Characterization Of Gallium Arsenide, Randy A. Roush

Electrical & Computer Engineering Theses & Dissertations

The properties of transition metals in gallium arsenide have been previously investigated extensively with respect to activation energies, but little effort has been made to correlate processing parameters with electronic characteristics. Diffusion of copper in gallium arsenide is of technological importance due to the development of GaAs:Cu bistable photoconductive devices. Several techniques are demonstrated in this work to develop and characterize compensated gallium arsenide wafers. The material is created by the thermal diffusion of copper into silicon-doped GaAs. Transition metals generally form deep and shallow acceptors in GaAs, and therefore compensation is possible by material processing such that the shallow …