Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Discipline
Institution
Keyword
Publication Year
Publication
File Type

Articles 31 - 60 of 1133

Full-Text Articles in Condensed Matter Physics

Highly Efficient Photocatalysts For Methylene Blue Degradation Based On A Platform Of Deposited Go-Zno Nanoparticles On Polyurethane Foam, Mohamed Morsy Dec 2022

Highly Efficient Photocatalysts For Methylene Blue Degradation Based On A Platform Of Deposited Go-Zno Nanoparticles On Polyurethane Foam, Mohamed Morsy

Nanotechnology Research Centre

No abstract provided.


Pyseg: A Python Package For 2d Material Flake Localization, Segmentation, And Thickness Prediction, Diana B. Horangic Dec 2022

Pyseg: A Python Package For 2d Material Flake Localization, Segmentation, And Thickness Prediction, Diana B. Horangic

Student Research Projects

Thin materials are of interest for their extraordinary physical, mechanical, thermal, electrical, and optical properties. Monolayers and bilayers of 2D materials can be manufactured through a variety of exfoliation methods. To determine layer thickness, Raman spectroscopy or other methods like Rayleigh scattering are used. These methods are, however, slow, and they require equipment beyond an optical microscope. A Python package that automates flake identification processes was built, with access solely to RGB data from an optical microscope assumed. My package, pyseg, localizes flakes on a substrate and then makes a rough estimate of their thickness from first principles. It can …


Spacecraft Charging Test Considerations For Composite Materials, Allen Andersen, Wousik Kim, J. R. Dennison, Brian Wood, Todd A. Schneider, Jason Vaughn, Kenneth H. Wright Jr., Nelson W. Green, Eric Suh, Joel Schwartz, Abdul-Majeed Azad Dec 2022

Spacecraft Charging Test Considerations For Composite Materials, Allen Andersen, Wousik Kim, J. R. Dennison, Brian Wood, Todd A. Schneider, Jason Vaughn, Kenneth H. Wright Jr., Nelson W. Green, Eric Suh, Joel Schwartz, Abdul-Majeed Azad

Journal Articles

Composite materials present a growing challenge for spacecraft charging assessments. We review some recent lessons learned for charging tests of composite materials using both parallel-plate and electron beam test geometries. We also discuss examples of materials that exhibit significant variations between samples, despite them all having the same trade name.


Oil/Water Separation And Functionality Of Smart Carbon Nanotube–Titania Nanotube Composite, Mohamed Morsy Nov 2022

Oil/Water Separation And Functionality Of Smart Carbon Nanotube–Titania Nanotube Composite, Mohamed Morsy

Nanotechnology Research Centre

No abstract provided.


An Interactive Simulation And Visualization Tool For Conventional And Aberration-Corrected Transmission Electron Microscopy, Xingzhong Li Nov 2022

An Interactive Simulation And Visualization Tool For Conventional And Aberration-Corrected Transmission Electron Microscopy, Xingzhong Li

Nebraska Center for Materials and Nanoscience: Faculty Publications

Contrast transfer function (CTF) is a vital function in transmission electron microscopy (TEM). It expresses to what extent amplitudes converted from the phase changes of the diffracted waves contribute to the TEM image, including the effects of lens aberrations. Simulation is very helpful to understand the application of the function thoroughly. In this work, we develop the CTFscope as a component in the Landyne software suite, to calculate the CTF with temporal and spatial dumping envelopes for conventional TEM and to extend it to various aberrations (up to fifth order) for aberration-corrected (AC)- TEM. It also includes effects on the …


Preparation, Investigation, And Temperature Sensing Application Of Rgo/Sno2/Co3o4 Composite, Mohamed Morsy Oct 2022

Preparation, Investigation, And Temperature Sensing Application Of Rgo/Sno2/Co3o4 Composite, Mohamed Morsy

Nanotechnology Research Centre

No abstract provided.


A Tem Study Of Fe3+X Co3-XTi2 (X = 0, 1, 2, 3) Intermetallic Alloys, Xingzhong Li, Anandakumar Sarella, B. Balasubramanian, Shah R. Valloppilly Oct 2022

A Tem Study Of Fe3+X Co3-XTi2 (X = 0, 1, 2, 3) Intermetallic Alloys, Xingzhong Li, Anandakumar Sarella, B. Balasubramanian, Shah R. Valloppilly

David Sellmyer Publications

A TEM study has been carried out on crystal structures in the rare-earth-free intermetallic alloys, Fe3+xCo3-xTi2 (x = 0, 1, 2, 3). These alloys have been demonstrated to have potentially high magnetic anisotropy. In these alloys, the main intermetallic compound was recently reported as a new hexagonal phase with a space group of P-6 m2. The present study reveals that the main compound belongs to Laves C14 variant surrounded by α-Fe type crystal as secondary phase in the Fe3+xCo3-xTi2 (x = 0, 1, 2, 3) alloys, in agreement with the …


Resonant Plasmonic–Biomolecular Chiral Interactions In The Far-Ultraviolet: Enantiomeric Discrimination Of Sub-10 Nm Amino Acid Films, Tiago Ramos Leite, Lin Zschiedrich, Orhan Kizilkaya, Kevin M. Mcpeak Sep 2022

Resonant Plasmonic–Biomolecular Chiral Interactions In The Far-Ultraviolet: Enantiomeric Discrimination Of Sub-10 Nm Amino Acid Films, Tiago Ramos Leite, Lin Zschiedrich, Orhan Kizilkaya, Kevin M. Mcpeak

Faculty Publications

Resonant plasmonic–molecular chiral interactions are a promising route to enhanced biosensing. However, biomolecular optical activity primarily exists in the far-ultraviolet regime, posing significant challenges for spectral overlap with current nano-optical platforms. We demonstrate experimentally and computationally the enhanced chiral sensing of a resonant plasmonic–biomolecular system operating in the far-UV. We develop a full-wave model of biomolecular films on Al gammadion arrays using experimentally derived chirality parameters. Our calculations show that detectable enhancements in the chiroptical signals from small amounts of biomolecules are possible only when tight spectral overlap exists between the plasmonic and biomolecular chiral responses. We support this conclusion …


Promoting The Humidity Sensing Capabilities Of Titania Nanorods/Rgo Nanocomposite Via De-Bundling And Maximizing Porosity And Surface Area Through Lyophilization, Mohamed Morsy Aug 2022

Promoting The Humidity Sensing Capabilities Of Titania Nanorods/Rgo Nanocomposite Via De-Bundling And Maximizing Porosity And Surface Area Through Lyophilization, Mohamed Morsy

Nanotechnology Research Centre

No abstract provided.


Physical Vapor Transport Growth Of Antiferromagnetic Crcl3 Flakes Down To Monolayer Thickness, Jia Wang, Zahra Ahmadi, David Lujan, Jeongheon Choe, Xiaoqin Li, Jeffrey E. Shield, Xia Hong Aug 2022

Physical Vapor Transport Growth Of Antiferromagnetic Crcl3 Flakes Down To Monolayer Thickness, Jia Wang, Zahra Ahmadi, David Lujan, Jeongheon Choe, Xiaoqin Li, Jeffrey E. Shield, Xia Hong

Department of Physics and Astronomy: Faculty Publications

The van der Waals magnets CrX3 (X = I, Br, and Cl) exhibit highly tunable magnetic properties and are promising candidates for developing novel two-dimensional (2D) magnetic devices such as magnetic tunnel junctions and spin tunneling transistors. Previous studies of CrCl3 have mainly focused on mechanically exfoliated samples. Controlled synthesis of high quality atomically thin flakes is critical for their technological implementation but has not been achieved to date. Here, we report the growth of large CrCl3 flakes with well-defined facets down to monolayer thickness (~0.6 nm) via the physical vapor transport technique. Long stripes of tri-layer samples …


Magnetic Skyrmions Unwrapped, Alexey Kovalev Aug 2022

Magnetic Skyrmions Unwrapped, Alexey Kovalev

Alexey Kovalev Papers

Experiments with chiral magnets may hold the key to a better understanding of fundamental aspects of transformations between different skyrmionic states, necessary for magnetic memory and logic applications to become a reality.

With the aim of developing computing devices that operate with low power dissipation, scientists have been pursuing the idea of encoding information in magnetic states. Specifically, skyrmions, which can be thought of as whirl-like states of magnetic moments, are promising candidates for this purpose. The advantage of skyrmions lies in their topological protection, a property implying that only a ‘global’ system modification can erase a skyrmion. Realizations of …


The 'Quantal Newtonian' First Law: A Complementary Perspective To The Stationary-State Quantum Theory Of Electrons, Viraht Sahni Aug 2022

The 'Quantal Newtonian' First Law: A Complementary Perspective To The Stationary-State Quantum Theory Of Electrons, Viraht Sahni

Publications and Research

A complementary perspective to the Göttingen-Copenhagen interpretation of stationary-state quantum theory of electrons in an electromagnetic field is described. The perspective, derived from Schrödinger-Pauli theory, is that of the individual electron via its equation of motion or ‘Quantal Newtonian’ First Law. The Law is in terms of ‘classical’ fields experienced by each electron: the sum of the external and internal fields vanishes. The external field is a sum of the electrostatic and Lorentz fields. The internal field is a sum of fields’ representative of Pauli and Coulomb correlations; kinetic effects; electron density; and internal magnetic component. The energy is obtained …


Modeling The Electronic Properties For Cnt Interacted With Zno, Cuo, And Co3o4, Mohamed Morsy Aug 2022

Modeling The Electronic Properties For Cnt Interacted With Zno, Cuo, And Co3o4, Mohamed Morsy

Nanotechnology Research Centre

Because of the wide applications of carbon nanotubes (CNTs) and magic properties of metal oxides, Hartree–Fock quantum mechanical calculations at HF/STO-3G were applied to study the electronic properties of CNTs and their interaction with ZnO, CuO, and Co 3O4. Calculations were conducted to calculate HOMO/LUMO bandgap energy ∆E, molecular electrostatic potential (MESP), and total dipole moment (TDM) for CNTs, CNTZn-O, CNT-Cu-O, CNT-Co-O, and CNT-O-Zn, CNT-O-Cu, CNT-O-Co following the two mechanisms of interaction as adsorbed and complex state. The calculations show that the interaction of CNTs with metal oxides increases its reactivity where MESP indicated to more distribution charges and an …


Nanoscale Studies Of The Ferroelectric And Electromechanical Properties Of Hafnia-Based Capacitors, Pratyush Buragohain Aug 2022

Nanoscale Studies Of The Ferroelectric And Electromechanical Properties Of Hafnia-Based Capacitors, Pratyush Buragohain

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

The work presented in this dissertation aims to provide nanoscopic insights into the electrical and electromechanical behavior of the recently discovered ferroelectric HfO2 or hafnia-based capacitors. Hafnia-based ferroelectrics are highly promising for technological applications due to compatibility with the existing Si technology. To realize the full potential of hafnia, however, requires comprehensive understanding of its properties. In this regard, this dissertation hopes to bridge a gap between an understanding of the nanoscopic and macroscopic properties of hafnia by performing combined high-resolution piezoresponse force microscopy (PFM) and pulse switching studies.

More specifically, the dynamics of domain nucleation and wall motion …


Majorana Bound States With Chiral Magnetic Textures, Utkan Güngördü, Alexey Kovalev Jul 2022

Majorana Bound States With Chiral Magnetic Textures, Utkan Güngördü, Alexey Kovalev

Alexey Kovalev Papers

The aim of this Tutorial is to give a pedagogical introduction into realizations of Majorana fermions, usually termed as Majorana bound states (MBSs), in condensed matter systems with magnetic textures. We begin by considering the Kitaev chain model of “spinless” fermions and show how two “half” fermions can appear at chain ends due to interactions. By considering this model and its two-dimensional generalization, we emphasize intricate relation between topological superconductivity and possible realizations of MBS. We further discuss how “spinless” fermions can be realized in more physical systems, e.g., by employing the spin-momentum locking. Next, we demonstrate how magnetic textures …


Majorana Bound States With Chiral Magnetic Textures, Utkan Güngördü, Alexey Kovalev Jul 2022

Majorana Bound States With Chiral Magnetic Textures, Utkan Güngördü, Alexey Kovalev

Department of Physics and Astronomy: Faculty Publications

The aim of this Tutorial is to give a pedagogical introduction into realizations of Majorana fermions, usually termed as Majorana bound states (MBSs), in condensed matter systems with magnetic textures. We begin by considering the Kitaev chain model of “spinless” fermions and show how two “half” fermions can appear at chain ends due to interactions. By considering this model and its two-dimensional generalization, we emphasize intricate relation between topological superconductivity and possible realizations of MBS. We further discuss how “spinless” fermions can be realized in more physical systems, e.g., by employing the spin-momentum locking. Next, we demonstrate how magnetic textures …


Asymmetric Control Of Light At The Nanoscale, Christos Argyropoulos Jul 2022

Asymmetric Control Of Light At The Nanoscale, Christos Argyropoulos

Department of Electrical and Computer Engineering: Faculty Publications

Breaking reciprocity at the nanoscale can produce directional formation of images due to the asymmetric nonlinear optical response of subwavelength anisotropic resonators. The self-induced passive non-reciprocity has advantages compared to magnet or time modulation approaches and may impact both classical and quantum photonics.


Modeling The Electronic Properties For Cnt Interacted With Zno, Cuo, And Co3o4, Mohamed Morsy Jul 2022

Modeling The Electronic Properties For Cnt Interacted With Zno, Cuo, And Co3o4, Mohamed Morsy

Nanotechnology Research Centre

No abstract provided.


Ultra-High Carrier Mobilities In Ferroelectric Domain Wall Corbino Cones At Room Temperature, Conor J. Mccluskey, Matthew G. Colbear, James P.V. Mcconville, Shane J. Mccartan, Jesi R. Maguire, Michele Conroy, Kalani Moore, Alan Harvey, Felix Trier, Ursel Bangert, Alexei Gruverman, Manuel Bibes, Amit Kumar, Raymong G.P. Mcquaid, J. Marty Gregg Jun 2022

Ultra-High Carrier Mobilities In Ferroelectric Domain Wall Corbino Cones At Room Temperature, Conor J. Mccluskey, Matthew G. Colbear, James P.V. Mcconville, Shane J. Mccartan, Jesi R. Maguire, Michele Conroy, Kalani Moore, Alan Harvey, Felix Trier, Ursel Bangert, Alexei Gruverman, Manuel Bibes, Amit Kumar, Raymong G.P. Mcquaid, J. Marty Gregg

Alexei Gruverman Publications

Recently, electrically conducting heterointerfaces between dissimilar band-insulators (such as lanthanum aluminate and strontium titanate) have attracted considerable research interest. Charge transport has been thoroughly explored and fundamental aspects of conduction firmly established. Perhaps surprisingly, similar insights into conceptually much simpler conducting homointerfaces, such as the domain walls that separate regions of different orientations of electrical polarisation within the same ferroelectric band-insulator, are not nearly so well-developed. Addressing this disparity, we herein report magnetoresistance in approximately conical 180° charged domain walls, which occur in partially switched ferroelectric thin film single crystal lithium niobate. This system is ideal for such measurements: firstly, …


Superfluid Spin Transistor, Edward Schwartz, Bo Li, Alexey Kovalev Jun 2022

Superfluid Spin Transistor, Edward Schwartz, Bo Li, Alexey Kovalev

Department of Physics and Astronomy: Faculty Publications

We propose to use the Hall response of topological defects, such as merons and antimerons, to spin currents in two-dimensional magnetic insulator with in-plane anisotropy for identification of the Berezinskii-Kosterlitz-Thouless (BKT) transition in a transistorlike geometry. Our numerical results relying on a combination of Monte Carlo and spin dynamics simulations show transition from spin superfluidity to conventional spin transport, accompanied by the universal jump of the spin stiffness and exponential growth of the transverse vorticity current. We propose a superfluid spin transistor in which the spin and vorticity currents are modulated by changes in density of free topological defects, e.g., …


Magnetism Of Novel Rare-Earth-Free Intermetallic Compounds, Haohan Wang Jun 2022

Magnetism Of Novel Rare-Earth-Free Intermetallic Compounds, Haohan Wang

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

Rare-earth-free magnets have drawn lots of interest because of their low cost, and the production is not limited by the shortage of rare-earth elements. This dissertation focuses on three rare-earth-free materials, Fe-Co-Ti alloys, Fe-Ni-B alloys, and Co-Si. All of them are synthesized by arc melting followed by melt-spinning. Fe3+xCo3−xTi2 (x = 0, 2, 3) alloys exhibit hexagonal crystal structures and show non-collinear spin structures according to neutron diffraction. The magnetic moments have projections on both the c-axis and basal plane, and the corresponding misalignment angle exhibits a nonlinear decrease with …


Correlations Between The Rotations And Magnetospheres Of The Terrestrial Planets And The Sun's Formation In Our Solar System, Fred J. Cadieu May 2022

Correlations Between The Rotations And Magnetospheres Of The Terrestrial Planets And The Sun's Formation In Our Solar System, Fred J. Cadieu

Publications and Research

Correlations between the rotations of the terrestrial planets in our solar system and the magnetic field of the Sun have been previously noted. These correlations account for the opposite rotation of Venus as a result of the magnetic field of the Sun being dragged across the conducting core of Venus. Currently the Sun’s magnetic field is not sufficiently strong to account for the proposed correlations. But recently meteorite paleomagnetism measurements have indicated that during the Sun’s formation the magnetic field of the Sun was of sufficient strength to have resulted in the observed correlations. As a part of these correlations …


Bio-Based Antibacterial Packaging From Decorated Bagasse Papers With Natural Rosin And Synthesised Go-Ag Nanoparticles, Mohamed Morsy May 2022

Bio-Based Antibacterial Packaging From Decorated Bagasse Papers With Natural Rosin And Synthesised Go-Ag Nanoparticles, Mohamed Morsy

Nanotechnology Research Centre

No abstract provided.


Modeling The Effects Of Surface Roughness On Electron Yield, Trace Taylor, Matthew Robertson, Jr Dennison Apr 2022

Modeling The Effects Of Surface Roughness On Electron Yield, Trace Taylor, Matthew Robertson, Jr Dennison

Conference Proceedings

Surface conditions—including surface morphology, composition, contamination, and oxidation—can significantly affect electron yields and consequently spacecraft charging. The effects of surface roughness on electron yield are modeled in this study by considering four aspects of electron yield calculations: (i) simple models of rough surface geometry, (ii) the angular distributions of electrons emitted from various points on these surfaces, (iii) the likelihood of these emitted electrons escaping the rough surface, and (iv) the relative fractions of smooth and rough surfaces. Three simple periodic one-dimensional surface profiles were considered—namely rectangular, triangular, and sawtooth features; each surface profile was characterized by an aspect ratio …


Laboratory Simulations Of Simultaneous Reduced Gravity And Ionizing Radiation Environments, Achal Duhoon, Jr Dennison Apr 2022

Laboratory Simulations Of Simultaneous Reduced Gravity And Ionizing Radiation Environments, Achal Duhoon, Jr Dennison

Conference Proceedings

A novel system has been developed to simulate the combined effects of reduced gravity and ionizing radiation present during spaceflight on biological and particulate samples. The miniature rotary cell culture system (mRCCS) was designed to synchronously rotate up to five independent vessels containing particulate samples suspended in fluid media, constructed using radiation tolerant, biocompatible, and vacuum compatible materials. Reduced gravity conditions were achieved when particles (e.g., 200 µm polystyrene microcarrier beads with or without adhered cell clusters) were suspended inside the vessels moving near terminal velocity in viscous fluid media with densities matched to the suspended …


Review Of Elastic Light Scattering From Single Aerosol Particles And Application In Bioaerosol Detection, Yong-Le Pan, Kevin B. Aptowicz, Jessica Arnold, Samuel Cheng, Aimable Kalume, Patricio Piedra, Chuji Wang, Joshua Santarpia, Gorden Videen Mar 2022

Review Of Elastic Light Scattering From Single Aerosol Particles And Application In Bioaerosol Detection, Yong-Le Pan, Kevin B. Aptowicz, Jessica Arnold, Samuel Cheng, Aimable Kalume, Patricio Piedra, Chuji Wang, Joshua Santarpia, Gorden Videen

Physics & Engineering Faculty Publications

Elastic light scattering (ELS) from single micron-sized particles has been used as a fast, non-destructive diagnostic tool in life science, physics, chemistry, climatology, and astrophysics. Due to the large scattering cross-section, ELS can be used to find trace amounts of suspect particles such as bioaerosols among complex, diverse atmospheric aerosols, based on single-particle interrogation. In this article, we briefly summarized the main computational models and instrumentation developed for ELS, then reviewed how properties like particle size, refractive index, degree of symmetry, and surface roughness, in addition to packing density, shape of primary particles in an aggregate, and special helix structures …


Modeling Defect Mediated Color-Tunability In Leds With Eu-Doped Gan-Based Active Layers, Hayley J. Austin, Brandon Mitchell, Dolf Timmerman, Jun Tatebayashi, Shuhei Ichikawa, Yasufumi Fujiwara, Volkmar Dierolf Jan 2022

Modeling Defect Mediated Color-Tunability In Leds With Eu-Doped Gan-Based Active Layers, Hayley J. Austin, Brandon Mitchell, Dolf Timmerman, Jun Tatebayashi, Shuhei Ichikawa, Yasufumi Fujiwara, Volkmar Dierolf

Physics & Engineering Faculty Publications

Color tunability from red to orange to yellow has been demonstrated in GaN-based LED devices with Eu-doped GaN layers as the active region. Under current injection, this is achieved by varying the current density and the pulse conditions. The underlying mechanism behind this color tunability is a redistribution of energy among the D-5(J) states of a Eu3+ ion. This energy shuffling is facilitated by a local defect that has been neglected in previous modeling work. Including this defect allows for a quantitative prediction of the relative time-averaged populations of the Eu3+ ion's D-5(0) and D-5(1) states. Extracting, from experimental results, …


Microwave-Assisted Synthesis Of Co-Doped Sno2/Rgo For Indoor Humidity Monitoring, Mohamed Morsy Jan 2022

Microwave-Assisted Synthesis Of Co-Doped Sno2/Rgo For Indoor Humidity Monitoring, Mohamed Morsy

Nanotechnology Research Centre

The evaluation of indoor humidity is challenging compared to other environmental parameters such as light intensity, temperature, sound and so forth. The proper selection of sensing materials and structural tuning will lead to high-performance humidity sensors. Herein, the SnO2/rGO and SnO2/rGO doped with Co nanocomposite were produced by microwave route. The obtained nanocomposite was characterized by XRD, SEM, EDAX, DTA, TGA, FTIR, Raman, and HRTEM. The successful incorporation of Co onto the rGO/SnO2 is affrmed by the XRD and supported with matching SEM and TEM outcomes where nanoscale particles exist. FTIR reveals the existence of the C– –C stretching band …


Investigating The Mechanical Performance Of Nano Additives Reinforced High-Performance Concrete, Mohamed Morsy Jan 2022

Investigating The Mechanical Performance Of Nano Additives Reinforced High-Performance Concrete, Mohamed Morsy

Nanotechnology Research Centre

It is known that nanomaterials have been broadly employed worldwide as reinforcements for the production of high-strength and high mechanical performance concrete-based structures. Hereinafter, high-performance concrete (HPC) modifed with three types of additives were synthesized: exfoliated nano clay (NC), nano-silica (NS), and hybrid particles [silica fume (SF) & limestone (LS)]. The compressive, splitting tensile and flexural strengths, were investigated at 28 days of hydration. The exfoliated NC was simply prepared via exfoliating the thermally activated ordinary clay with the aid of organic ammonium chloride. The results revealed that all types of the employed additives provided an augmentation in the mechanical …


Infrared Dielectric Functions And Brillouin Zone Center Phonons Of Α-Ga2O3 Compared To Α-Al2O3, Megan Stokey, Rafal Korlacki, Matthew J. Hilfiker, Sean Knight, Steffen Richter, Vanya Darakchieva, Riena Jinno, Yongjin Cho, Huili Grace Xing, Debdeep Jena, Yuichi Oshima, Kamruzzaman Khan, Elaheh Ahmadi, Mathias Schubert Jan 2022

Infrared Dielectric Functions And Brillouin Zone Center Phonons Of Α-Ga2O3 Compared To Α-Al2O3, Megan Stokey, Rafal Korlacki, Matthew J. Hilfiker, Sean Knight, Steffen Richter, Vanya Darakchieva, Riena Jinno, Yongjin Cho, Huili Grace Xing, Debdeep Jena, Yuichi Oshima, Kamruzzaman Khan, Elaheh Ahmadi, Mathias Schubert

Department of Electrical and Computer Engineering: Faculty Publications

We determine the anisotropic dielectric functions of rhombohedral α-Ga2O3 by far-infrared and infrared generalized spectroscopic ellipsometry and derive all transverse optical and longitudinal optical phonon mode frequencies and broadening parameters. We also determine the high-frequency and static dielectric constants. We perform density functional theory computations and determine the phonon dispersion for all branches in the Brillouin zone, and we derive all phonon mode parameters at the Brillouin zone center including Raman-active, infrared-active, and silent modes. Excellent agreement is obtained between our experimental and computation results as well as among all previously reported partial information from experiment …