Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Elementary Particles and Fields and String Theory

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 18 of 18

Full-Text Articles in Condensed Matter Physics

Thermalization And Quantum Information In Conformal Field Theory, Ashish Kakkar Jan 2022

Thermalization And Quantum Information In Conformal Field Theory, Ashish Kakkar

Theses and Dissertations--Physics and Astronomy

The consequences of the constraints of conformal symmetry are far-reaching within
theoretical physics. In this dissertation we address a series of questions in conformal
field theory: 1) We calculate the spectrum of qKdV charges in a large central charge
expansion. 2) We determine the corrections to bulk information geometry from 1/N
contributions to holographic correlators. 3) We study the higher genus partitions
functions of CFTs associated with classical and quantum error-correcting codes.


Generally Covariant Theory Of Multipole Moment Conserving Quasiparticles, Gavin Eric Riley Jan 2022

Generally Covariant Theory Of Multipole Moment Conserving Quasiparticles, Gavin Eric Riley

Honors Theses and Capstones

This report represents the creation of a field theory which is capable of describing quasiparticle excitations that preserve 2^k -pole moments. These quasiparticles exhibit certain ’semidynamic’ properties such as individual particle immobility but free movement of bound 2^L-tuples. We provide a review of work done on dipole conserving fractons and their dynamics [1] and expand upon it to describe higher moment conserving systems with global quadratic (and higher) phase symmetry. This requires the selection of the temporal and spatial directions. The selection of a temporal direction is done with a foliation defined by an anisotropic scaling of space and time, …


Study Of The Geometric Structure Of Low-Atomic Copper Clusters Using Computer Simulation, Nodirbek Ikromjonovich Ibrokhimov Dec 2021

Study Of The Geometric Structure Of Low-Atomic Copper Clusters Using Computer Simulation, Nodirbek Ikromjonovich Ibrokhimov

Scientific-technical journal

In this work, we investigated the geometric structure of small neutral copper clusters with low energy using the MD (Molecular Dynamics) method. When calculating the processes of interatomic interaction, we used a potential EAM (Embedded-atom method). A computer model of Cun (n = 2-13) clusters has been created. The geometric shapes of the Cu2, Cu3, Cu4, Cu5, Cu6, Cu7, Cu8, Cu9, Cu10, Cu11, Cu12, and Cu13 clusters have been studied and the structural parameters (Cu-Cu bond …


Topics In Quantum Quench And Entanglement, Sinong Liu Jan 2021

Topics In Quantum Quench And Entanglement, Sinong Liu

Theses and Dissertations--Physics and Astronomy

The dissertation includes two parts.

In Part I, we study non-equilibrium phenomena in various models associated with global quantum quench. It is known that local quantities, when subjected to global quantum quench across or approaching critical points, exhibit a variety of universal scaling behaviors at various quench rates. To investigate if similar scaling holds for non-local quantities, we consider the scaling behavior of circuit complexity under quantum quench across the critical massless point in Majorana fermion field theory of the one-dimensional integrable transverse field Ising model and find it obeys such scaling. To investigate if similar scaling holds for non-relativistic …


Magnetic Forces In The Absence Of A Classical Magnetic Field, Ismael L. Paiva, Yakir Aharonov, Jeff Tollaksen, Mordecai Waegell Apr 2020

Magnetic Forces In The Absence Of A Classical Magnetic Field, Ismael L. Paiva, Yakir Aharonov, Jeff Tollaksen, Mordecai Waegell

Mathematics, Physics, and Computer Science Faculty Articles and Research

It is shown that, in some cases, the effect of discrete distributions of flux lines in quantum mechanics can be associated with the effect of continuous distributions of magnetic fields with special symmetries. In particular, flux lines with an arbitrary value of magnetic flux can be used to create energetic barriers, which can be used to confine quantum systems in specially designed configurations. This generalizes a previous work where such energy barriers arose from flux lines with half-integer fluxons. Furthermore, it is shown how the Landau levels can be obtained from a two-dimensional grid of flux lines. These results suggest …


Non-Abelian Quasiholes In Lattice Moore-Read States And Parent Hamiltonians, Sourav Manna, Julia Wildeboer, Germán Sierra, Anne E. B. Nielsen Oct 2018

Non-Abelian Quasiholes In Lattice Moore-Read States And Parent Hamiltonians, Sourav Manna, Julia Wildeboer, Germán Sierra, Anne E. B. Nielsen

Physics and Astronomy Faculty Publications

This work concerns Ising quasiholes in Moore-Read type lattice wave functions derived from conformal field theory. We commence with constructing Moore-Read type lattice states and then add quasiholes to them. By use of Metropolis Monte Carlo simulations, we analyze the features of the quasiholes, such as their size, shape, charge, and braiding properties. The braiding properties, which turn out to be the same as in the continuum Moore-Read state, demonstrate the topological attributes of the Moore-Read lattice states in a direct way. We also derive parent Hamiltonians for which the states with quasiholes included are ground states. One advantage of …


Quantum Fields In Extreme Backgrounds, Leandro Medina De Oliveira May 2018

Quantum Fields In Extreme Backgrounds, Leandro Medina De Oliveira

Arts & Sciences Electronic Theses and Dissertations

Quantum field theories behave in interesting and nontrivial ways in the presence of intense electric and/or magnetic fields. Describing such behavior correctly, particularly at finite (nonzero) temperature and density, is of importance for particle physics, nuclear physics, astrophysics, condensed matter physics, and cosmology. Incorporating these conditions as external parameters also provides useful probes into the nonperturbative structure of gauge theories.

In this work, formalism for describing matter in a variety of extreme conditions is developed and implemented. We develop several expansions of one-loop finite temperature effects for spinor particles in the presence of magnetic fields, including the effects of confinement, …


Universal Scaling Properties After Quantum Quenches, Damian Andres Galante Mar 2016

Universal Scaling Properties After Quantum Quenches, Damian Andres Galante

Electronic Thesis and Dissertation Repository

In this Thesis, the problem of a quantum quench in quantum field theories is analyzed. This involves studying the real time evolution of observables in a theory that undergoes a change in one of its couplings. These quenches are then characterized by two parameters: $\delta \lambda$, the magnitude of the quench and most importantly, $\delta t$, the quench duration. In contrast to previous studies of abrupt quenches in the condensed matter theory community, we will be interested in smooth quenches with a finite $\delta t$.

Motivated by existing results in holographic theories, we studied the problem of a fast smooth …


Spontaneously Generated Inhomogeneous Phases Via Holography, Kübra Yeter Aydeniz Dec 2015

Spontaneously Generated Inhomogeneous Phases Via Holography, Kübra Yeter Aydeniz

Doctoral Dissertations

We discuss a holographic model consisting of a U(1) gauge field and a scalar field coupled to a charged AdS (anti-de Sitter) black hole under a spatially homogeneous chemical potential. By turning on a higher-derivative interaction term between the U(1) gauge field and the scalar field, a spatially dependent profile of the scalar field is generated spontaneously. We calculate the critical temperature at which the transition to the inhomogeneous phase occurs for various values of the parameters of the system. We solve the equations of motion below the critical temperature, and show that the dual gauge theory on the boundary …


Distributions Of Long-Lived Radioactive Nuclei Provided By Star-Forming Environments, Marco Fatuzzo, Fred Adams Nov 2015

Distributions Of Long-Lived Radioactive Nuclei Provided By Star-Forming Environments, Marco Fatuzzo, Fred Adams

Faculty Scholarship

Radioactive nuclei play an important role in planetary evolution by providing an internal heat source, which affects planetary structure and helps facilitate plate tectonics. A minimum level of nuclear activity is thought to be necessary—but not sufficient—for planets to be habitable. Extending previous work that focused on short-lived nuclei, this paper considers the delivery of long-lived radioactive nuclei to circumstellar disks in star forming regions. Although the long-lived nuclear species are always present, their abundances can be enhanced through multiple mechanisms. Most stars form in embedded cluster environments, so that disks can be enriched directly by intercepting ejecta from supernovae …


Charged Particle Dynamics In The Magnetic Field Of A Long Straight Current-Carrying Wire, M. Fatuzzo, A. Prentice, T. Toepker Jan 2015

Charged Particle Dynamics In The Magnetic Field Of A Long Straight Current-Carrying Wire, M. Fatuzzo, A. Prentice, T. Toepker

Faculty Scholarship

The article discusses the concept behind motion of a charged particle in a non-uniform filed of a wire carrying current. Topics discussed include possible types of motion in a current carrying field, vector analysis of velocity and magnetic field of the particle and Coupled differential equations.


A Numerical Assessment Of Cosmic-Ray Energy Diffusion Through Turbulent Media, M. Fatuzzo, F. Melia Jan 2014

A Numerical Assessment Of Cosmic-Ray Energy Diffusion Through Turbulent Media, M. Fatuzzo, F. Melia

Faculty Scholarship

No abstract provided.


Effects Of Turbulence On Cosmic Ray Propagation In Protostars And Young Stars, M. Fatuzzo, F. C. Adams Jan 2014

Effects Of Turbulence On Cosmic Ray Propagation In Protostars And Young Stars, M. Fatuzzo, F. C. Adams

Faculty Scholarship

No abstract provided.


Time Dependent Holography, Diptarka Das Jan 2014

Time Dependent Holography, Diptarka Das

Theses and Dissertations--Physics and Astronomy

One of the most important results emerging from string theory is the gauge gravity duality (AdS/CFT correspondence) which tells us that certain problems in particular gravitational backgrounds can be exactly mapped to a particular dual gauge theory a quantum theory very similar to the one explaining the interactions between fundamental subatomic particles. The chief merit of the duality is that a difficult problem in one theory can be mapped to a simpler and solvable problem in the other theory. The duality can be used both ways.

Most of the current theoretical framework is suited to study equilibrium systems, or …


A Holographic Model Of Striped Superconductors, Suman Ganguli Dec 2013

A Holographic Model Of Striped Superconductors, Suman Ganguli

Doctoral Dissertations

One of the most prominent distinguishing features in strongly correlated electron systems, such as the high Tc (critical temperature) cuprates and the most recent iron pnictides, is the presence of "competing orders" that are related to the breaking of the lattice symmetries. Does the ubiquitous presence of such inhomogeneous orders in strongly correlated superconductors have a deep connection to superconductivity? The answer to this question is crucial for identifying the mechanism of superconductivity, at least in the cuprates. Amidst serious difficulties within conventional theoretical framework to deal with strongly interacting degrees of freedom at finite density, "AdS/CFT correspondence" or "gauge/gravity …


Condensed Matter From Gauge/Gravity Duality, Jason Edward Therrien Dec 2012

Condensed Matter From Gauge/Gravity Duality, Jason Edward Therrien

Doctoral Dissertations

Currently strongly coupled systems present the greatest challenge to theoretical physics. For years conventional methods of approach have failed to describe these systems analytically. In recent years it has been shown that there is a duality between weakly coupled and strongly coupled systems, the Gauge Theory/Gravity Duality. In this dissertation I will discuss how the AdS/CFT is used to describe strongly coupled condensed matter systems as well as present the work done by the author and collaborators.


Assessing The Feasibility Of Cosmic-Ray Acceleration By Magnetic Turbulence At The Magnetic Center, M. Fatuzzo, F. Melia Jan 2012

Assessing The Feasibility Of Cosmic-Ray Acceleration By Magnetic Turbulence At The Magnetic Center, M. Fatuzzo, F. Melia

Faculty Scholarship

No abstract provided.


Quantitative Study Of Spin-Flip Co-Tunneling Transport In A Quantum Dot, S. Herbert, T-M. Liu, A. N. Ngo Jan 2012

Quantitative Study Of Spin-Flip Co-Tunneling Transport In A Quantum Dot, S. Herbert, T-M. Liu, A. N. Ngo

Faculty Scholarship

No abstract provided.